The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

NO causes perinatal pulmonary vasodilation through K+-channel activation and intracellular Ca2+ release.

Evidence suggests that nitric oxide (NO) causes perinatal pulmonary vasodilation through K+-channel activation. We hypothesized that this effect worked through cGMP-dependent kinase-mediated activation of Ca2+-activated K+ channel that requires release of intracellular Ca2+ from a ryanodine-sensitive store. We studied the effects of 1) K+-channel blockade with tetraethylammonium, 4-aminopyridine, a voltage-dependent K+-channel blocker, or glibenclamide, an ATP-sensitive K+-channel blocker; 2) cyclic nucleotide-sensitive kinase blockade with either KT-5823, a guanylate-sensitive kinase blocker, or H-89, an adenylate-sensitive kinase blocker; and 3) blockade of intracellular Ca2+ release with ryanodine on NO-induced pulmonary vasodilation in acutely prepared late-gestation fetal lambs. N-nitro-L-arginine, a competitive inhibitor of endothelium-derived NO synthase, was infused into the left pulmonary artery, and tracheotomy was placed. The animals were ventilated with 100% oxygen for 20 min, followed by ventilation with 100% oxygen and inhaled NO at 20 parts/million (ppm) for 20 min. This represents the control period. In separate protocols, the animals received an intrapulmonary infusion of the different blockers and were ventilated as above. Tetraethylammonium (n = 6 animals) and KT-5823 (n = 4 animals) attenuated the response, whereas ryanodine (n = 5 animals) blocked NO-induced perinatal pulmonary vasodilation. 4-Aminopyridine (n = 5 animals), glibenclamide (n = 5 animals), and H-89 (n = 4 animals) did not affect NO-induced pulmonary vasodilation. We conclude that NO causes perinatal pulmonary vasodilation through cGMP-dependent kinase-mediated activation of Ca2+-activated K+ channels and release of Ca2+ from ryanodine-sensitive stores.[1]

References

  1. NO causes perinatal pulmonary vasodilation through K+-channel activation and intracellular Ca2+ release. Saqueton, C.B., Miller, R.B., Porter, V.A., Milla, C.E., Cornfield, D.N. Am. J. Physiol. (1999) [Pubmed]
 
WikiGenes - Universities