The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Characterization of Na+/HCO-3 cotransporter isoform NBC-3.

Na+-HCO-3 cotransporters mediate the transport of HCO-3 into or out of the cell. Two Na+-HCO-3 cotransporters (NBC) have been identified previously, which are referred to as NBC-1 and NBC-2. A cDNA library from uninduced human NT-2 cells was screened with an NBC-2 cDNA probe. Several clones were identified and isolated. Sequence analysis of these clones identified a partial coding region (2 kb) of a novel NBC (called here NBC-3), which showed 53% and 72% identity with NBC-1 and NBC-2, respectively. Northern blot analysis revealed that NBC-3 encodes a 4.4-kb mRNA with a tissue distribution pattern distinct from NBC-1 and NBC-2. NBC-3 is highly expressed in brain and spinal column, with moderate levels in trachea, thyroid, and kidney. In contrast with NBC-1, NBC-3 shows low levels of expression in pancreas and kidney cortex. In the kidney, NBC-3 expression is predominantly limited to the medulla. Cultured mouse inner medullary collecting duct (mIMCD-3) cells showed high levels of NBC-1 and low levels of NBC-3 mRNA expression. Subjecting the mutagenized mIMCD-3 cells to sublethal acid stress decreased the mRNA expression of NBC-1 by approximately 90% but increased the Na+-dependent HCO-3 cotransport activity by approximately 7-fold (as assayed by DIDS-sensitive, Na+-dependent, HCO-3-mediated intracellular pH recovery). This increase was associated with approximately 5.5-fold enhancement of NBC-3 mRNA levels. NBC showed significant affinity for Li+ in the mutant but not the parent mIMCD-3 cells. On the basis of the widespread distribution of NBC-3, we propose that this isoform is likely involved in cell pH regulation by transporting HCO-3 from blood to the cell. We further propose that enhanced expression of NBC-3 in severe acid stress could play an important role in cell survival by mediating the influx of HCO-3 into the cells.[1]

References

  1. Characterization of Na+/HCO-3 cotransporter isoform NBC-3. Amlal, H., Burnham, C.E., Soleimani, M. Am. J. Physiol. (1999) [Pubmed]
 
WikiGenes - Universities