The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Gbetagamma and palmitate target newly synthesized Galphaz to the plasma membrane.

The subcellular location of a signaling protein determines its ability to transmit messages accurately and efficiently. Three different lipid modifications tether heterotrimeric G proteins to membranes: alpha subunits are myristoylated and/or palmitoylated, and gamma subunits are prenylated. In a previous study, we examined the role of lipid modifications in maintaining the membrane attachment of a G protein alpha subunit, alphaz, which is myristoylated and palmitoylated (Morales, J., Fishburn, C. S., Wilson, P. T., and Bourne, H. R. (1998) Mol. Biol. Cell 9, 1-14). Now we extend this analysis by characterizing the mechanisms that target newly synthesized alphaz to the plasma membrane (PM) and analyze the role of lipid modifications in this process. In comparison with newly synthesized alphas, which is palmitoylated but not myristoylated, alphaz moves more rapidly to the membrane fraction following synthesis in the cytosol. Newly synthesized alphaz associates randomly with cellular membranes, but with time accumulates at the PM. Palmitoylated alphaz is present only in PM-enriched fractions, whereas a nonpalmitoylated mutant of alphaz (alphazC3A) associates less stably with the PM than does wild-type alphaz. Expression of a C-terminal fragment of the beta-adrenoreceptor kinase, which sequesters free betagamma, impairs association of both alphaz and alphazC3A with the PM, suggesting that the alpha subunit must bind betagamma in order to localize at the PM. Based on these findings, we propose a model in which, following synthesis on soluble ribosomes, myristoylated alphaz associates randomly and reversibly with membranes; upon association with the PM, alphaz binds betagamma, which promotes its palmitoylation, thus securing it in the proper place for transmitting the hormonal signal.[1]

References

  1. Gbetagamma and palmitate target newly synthesized Galphaz to the plasma membrane. Fishburn, C.S., Herzmark, P., Morales, J., Bourne, H.R. J. Biol. Chem. (1999) [Pubmed]
 
WikiGenes - Universities