The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

An aspartate residue at the extracellular boundary of TMII and an arginine residue in TMVII of the gastrin-releasing peptide receptor interact to facilitate heterotrimeric G protein coupling.

The mammalian bombesin receptor subfamily of G protein- coupled receptors currently consists of the gastrin-releasing peptide receptor (GRP-R), neuromedin B receptor, and bombesin receptor subtype 3. All three receptors contain a conserved aspartate residue (D98) at the extracellular boundary of transmembrane domain II and a conserved arginine residue (R309) near the extracellular boundary of transmembrane domain VII. To evaluate the functional role of these residues, site-directed GRP-R mutants were expressed in fibroblasts and assayed for their ability to both bind agonist and catalyze exchange of guanine nucleotides. Alanine substitution at GRP-R position 98 or 309 reduced agonist binding affinity by 24- and 56-fold, respectively, compared to wild-type GRP-R. Single swap GRP-R mutations either resulted in no receptor expression in the membrane (D98R) or the protein was not able to bind agonist (R309D). In contrast, the double swap mutation (D98R/R309D) had high-affinity agonist binding, reduced from wild-type GRP-R by only 6-fold. In situ reconstitution of urea-extracted membranes expressing either wild-type or mutant (D98A or R309A) GRP-R with G(q) indicated that alanine substitution greatly reduced G protein catalytic exchange compared to wild-type GRP-R. The D98R/R309D GRP-R had both a higher intrinsic basal activity and a higher overall catalytic exchange activity compared to wild-type; however, the wild-type GRP-R produced a larger agonist-stimulated response relative to the double swap mutant. Taken together, these data show that GRP-R residues D98 and R309 are critical for efficient coupling of GRP-R to G(q). Furthermore, our findings are consistent with a salt bridge interaction between these two polar and oppositely charged amino acids that maintains the proper receptor conformation necessary to interact with G proteins.[1]

References

  1. An aspartate residue at the extracellular boundary of TMII and an arginine residue in TMVII of the gastrin-releasing peptide receptor interact to facilitate heterotrimeric G protein coupling. Donohue, P.J., Sainz, E., Akeson, M., Kroog, G.S., Mantey, S.A., Battey, J.F., Jensen, R.T., Northup, J.K. Biochemistry (1999) [Pubmed]
 
WikiGenes - Universities