The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Grpr  -  gastrin releasing peptide receptor

Mus musculus

Synonyms: GRP-R, GRP-preferring bombesin receptor, Gastrin-releasing peptide receptor, bombesin receptor
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Grpr


Psychiatry related information on Grpr


High impact information on Grpr

  • These experiments provide genetic evidence that GRP and its neural circuitry operate as a negative feedback regulating fear and establish a causal relationship between Grpr gene expression, LTP, and amygdala-dependent memory for fear [9].
  • Moreover, we found that GRP receptor (GRPR) is expressed in GABAergic interneurons of the lateral nucleus [9].
  • GRPR-deficient mice showed decreased inhibition of principal neurons by the interneurons, enhanced long-term potentiation (LTP), and greater and more persistent long-term fear memory [9].
  • We describe the structure and expression of a cloned NMB-preferring bombesin receptor (NMB-R) with properties distinct from a GRP-preferring bombesin receptor (GRP-R) reported previously [10].
  • The gastrin-releasing peptide receptor (GRP-R) is one of three members of the mammalian bombesin subfamily of seven-transmembrane G protein-coupled receptors that mediate diverse biological responses including secretion, neuromodulation, chemotaxis, and growth [11].

Chemical compound and disease context of Grpr


Biological context of Grpr

  • Comparative mapping of the Grpr locus on the X chromosomes of man and mouse [13].
  • Exclusion of three candidate genes, Grpr, Cxn33, and Pdha1, for the X-linked cataract gene on the distal region of the mouse chromosome X [14].
  • Studies in man indicate that GRPR maps to the Xp21.2-p22.3 region of the human X chromosome and not to the Xp11-q11 interval as previously reported [13].
  • In addition, the behavioral phenotypes of GRP-R-deficient mice were not observed in NMB-R-deficient mice [15].
  • In conclusion, we show that for the PLC-coupled GRP-R, receptor number had little or no effect on binding affinity, potency for activating PLC, tyrosine phosphorylation of p125FAK, or extent of receptor internalization [16].

Anatomical context of Grpr


Associations of Grpr with chemical compounds


Physical interactions of Grpr


Regulatory relationships of Grpr

  • Unlike the impaired responses to BN-like peptides, the feeding inhibitory action of cholecystokinin was enhanced in GRP-R KO mice [4].
  • A domain on the GRP molecule involving Lys-13 or Arg-17 was identified which promoted binding to the GRP receptor under conditions of low ionic strength [23].

Other interactions of Grpr

  • In a previous report we identified four amino acids that are critical for high affinity binding of bombesin and gastrin-releasing peptide (GRP) to the GRP-R [24].
  • To explore the cause of this phenomenon, we examined changes in feeding responses to appetite-related neuropeptides in BRS-3-deficient, GRP-R-deficient, and wild-type littermate mice [25].
  • The bombesin receptor subtypes have distinct G protein specificities [26].
  • In addition, GRP-R showed higher catalytic activity on squid Galphaq [26].
  • [DPhe12]Bn analogs; des Met14 amides, esters and alkylamides; psi 13-14 Bn pseudopeptides; and D-amino acid-substituted analogs of substance P (SP) or SP(4-11) were all synthesized and each functioned as a GRP receptor antagonist [27].

Analytical, diagnostic and therapeutic context of Grpr

  • There was no significant difference in feeding between BRS-3-deficient and wild-type littermate mice after treatment with bombesin (BN), although the hypophagic response to low-dose BN was significantly suppressed in the GRP-R-deficient mice [25].
  • By using RT-PCR we showed that GRPR mRNA is expressed in islets of wild-type mice, but is lost in GRPR-deleted mice [21].
  • Double-labeling immunohistochemistry demonstrated that subpopulations of GRP-R are present in GABAergic neurons in the amygdala [28].
  • To define the in vivo function of GRPR, we generated GRPR null mutant mice by gene targeting [6].
  • The presence of a spacer in the molecule induced an increment in the in vivo uptake in pancreas and PC-3 xenografts (GRP receptor-positive tissues) [29].


  1. Bombesin inhibits alveolarization and promotes pulmonary fibrosis in newborn mice. Ashour, K., Shan, L., Lee, J.H., Schlicher, W., Wada, K., Wada, E., Sunday, M.E. Am. J. Respir. Crit. Care Med. (2006) [Pubmed]
  2. Molecular organization of the mouse gastrin-releasing peptide receptor gene and its promoter. Weber, H.C., Jensen, R.T., Battey, J.F. Gene (2000) [Pubmed]
  3. Gastrin-releasing peptide is a mitogen and a morphogen in murine colon cancer. Carroll, R.E., Matkowskyj, K.A., Tretiakova, M.S., Battey, J.F., Benya, R.V. Cell Growth Differ. (2000) [Pubmed]
  4. Disruptions in feeding and body weight control in gastrin-releasing peptide receptor deficient mice. Ladenheim, E.E., Hampton, L.L., Whitney, A.C., White, W.O., Battey, J.F., Moran, T.H. J. Endocrinol. (2002) [Pubmed]
  5. Bombesin-like peptides: studies on food intake and social behaviour with receptor knock-out mice. Yamada, K., Wada, E., Wada, K. Ann. Med. (2000) [Pubmed]
  6. Generation and characterization of mice lacking gastrin-releasing peptide receptor. Wada, E., Watase, K., Yamada, K., Ogura, H., Yamano, M., Inomata, Y., Eguchi, J., Yamamoto, K., Sunday, M.E., Maeno, H., Mikoshiba, K., Ohki-Hamazaki, H., Wada, K. Biochem. Biophys. Res. Commun. (1997) [Pubmed]
  7. Male mice lacking the gastrin-releasing peptide receptor (GRP-R) display elevated preference for conspecific odors and increased social investigatory behaviors. Yamada, K., Wada, E., Wada, K. Brain Res. (2000) [Pubmed]
  8. The bombesin/gastrin releasing peptide receptor antagonist RC-3095 blocks apomorphine but not MK-801-induced stereotypy in mice. Meller, C.A., Henriques, J.A., Schwartsmann, G., Roesler, R. Peptides (2004) [Pubmed]
  9. Identification of a signaling network in lateral nucleus of amygdala important for inhibiting memory specifically related to learned fear. Shumyatsky, G.P., Tsvetkov, E., Malleret, G., Vronskaya, S., Hatton, M., Hampton, L., Battey, J.F., Dulac, C., Kandel, E.R., Bolshakov, V.Y. Cell (2002) [Pubmed]
  10. cDNA cloning, characterization, and brain region-specific expression of a neuromedin-B-preferring bombesin receptor. Wada, E., Way, J., Shapira, H., Kusano, K., Lebacq-Verheyden, A.M., Coy, D., Jensen, R., Battery, J. Neuron (1991) [Pubmed]
  11. Loss of bombesin-induced feeding suppression in gastrin-releasing peptide receptor-deficient mice. Hampton, L.L., Ladenheim, E.E., Akeson, M., Way, J.M., Weber, H.C., Sutliff, V.E., Jensen, R.T., Wine, L.J., Arnheiter, H., Battey, J.F. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  12. Bombesin specifically induces intracellular calcium mobilization via gastrin-releasing peptide receptors in human prostate cancer cells. Aprikian, A.G., Han, K., Chevalier, S., Bazinet, M., Viallet, J. J. Mol. Endocrinol. (1996) [Pubmed]
  13. Comparative mapping of the Grpr locus on the X chromosomes of man and mouse. Maslen, G.L., Boyd, Y. Genomics (1993) [Pubmed]
  14. Exclusion of three candidate genes, Grpr, Cxn33, and Pdha1, for the X-linked cataract gene on the distal region of the mouse chromosome X. Zhou, E., Favor, J., Silvers, W., Stambolian, D. Mamm. Genome (1995) [Pubmed]
  15. Functional properties of two bombesin-like peptide receptors revealed by the analysis of mice lacking neuromedin B receptor. Ohki-Hamazaki, H., Sakai, Y., Kamata, K., Ogura, H., Okuyama, S., Watase, K., Yamada, K., Wada, K. J. Neurosci. (1999) [Pubmed]
  16. Effect of gastrin-releasing peptide receptor number on receptor affinity, coupling, degradation, and modulation. Tsuda, T., Kusui, T., Hou, W., Benya, R.V., Akeson, M.A., Kroog, G.S., Battey, J.F., Jensen, R.T. Mol. Pharmacol. (1997) [Pubmed]
  17. Cloning and expression of the neuromedin B receptor and the third subtype of bombesin receptor genes in the mouse. Ohki-Hamazaki, H., Wada, E., Matsui, K., Wada, K. Brain Res. (1997) [Pubmed]
  18. Bombesin receptor structure and expression in human lung carcinoma cell lines. Fathi, Z., Way, J.W., Corjay, M.H., Viallet, J., Sausville, E.A., Battey, J.F. J. Cell. Biochem. Suppl. (1996) [Pubmed]
  19. Bombesin and [Leu8]phyllolitorin promote fetal mouse lung branching morphogenesis via a receptor-mediated mechanism. King, K.A., Torday, J.S., Sunday, M.E. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  20. An aspartate residue at the extracellular boundary of TMII and an arginine residue in TMVII of the gastrin-releasing peptide receptor interact to facilitate heterotrimeric G protein coupling. Donohue, P.J., Sainz, E., Akeson, M., Kroog, G.S., Mantey, S.A., Battey, J.F., Jensen, R.T., Northup, J.K. Biochemistry (1999) [Pubmed]
  21. Islet function phenotype in gastrin-releasing peptide receptor gene-deficient mice. Persson, K., Pacini, G., Sundler, F., Ahrén, B. Endocrinology (2002) [Pubmed]
  22. The bombesin receptor is coupled to a guanine nucleotide-binding protein which is insensitive to pertussis and cholera toxins. Fischer, J.B., Schonbrunn, A. J. Biol. Chem. (1988) [Pubmed]
  23. Purification and characterization of the bombesin/gastrin-releasing peptide receptor from Swiss 3T3 cells. Feldman, R.I., Wu, J.M., Jenson, J.C., Mann, E. J. Biol. Chem. (1990) [Pubmed]
  24. Four amino acid residues are critical for high affinity binding of neuromedin B to the neuromedin B receptor. Sainz, E., Akeson, M., Mantey, S.A., Jensen, R.T., Battey, J.F. J. Biol. Chem. (1998) [Pubmed]
  25. Leptin resistance and enhancement of feeding facilitation by melanin-concentrating hormone in mice lacking bombesin receptor subtype-3. Maekawa, F., Quah, H.M., Tanaka, K., Ohki-Hamazaki, H. Diabetes (2004) [Pubmed]
  26. The bombesin receptor subtypes have distinct G protein specificities. Jian, X., Sainz, E., Clark, W.A., Jensen, R.T., Battey, J.F., Northup, J.K. J. Biol. Chem. (1999) [Pubmed]
  27. Peptide structural requirements for antagonism differ between the two mammalian bombesin receptor subtypes. Lin, J.T., Coy, D.H., Mantey, S.A., Jensen, R.T. J. Pharmacol. Exp. Ther. (1995) [Pubmed]
  28. Immunohistochemical localization of gastrin-releasing peptide receptor in the mouse brain. Kamichi, S., Wada, E., Aoki, S., Sekiguchi, M., Kimura, I., Wada, K. Brain Res. (2005) [Pubmed]
  29. New [(99m)Tc]bombesin analogues with improved biodistribution for targeting gastrin releasing-peptide receptor-positive tumors. García Garayoa, E., Schweinsberg, C., Maes, V., Rüegg, D., Blanc, A., Bläuenstein, P., Tourwé, D.A., Beck-Sickinger, A.G., Schubiger, P.A. The quarterly journal of nuclear medicine and molecular imaging : official publication of the Italian Association of Nuclear Medicine (AIMN) [and] the International Association of Radiopharmacology (IAR), [and] Section of the Society of Radiopharmaceut... (2007) [Pubmed]
WikiGenes - Universities