The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

c-Src association with and phosphorylation of p58gag, a membrane- and microfilament-associated retroviral Gag-like protein in a xenotransplantable rat mammary tumor.

The retroviral Gag-like protein p58gag expressed in a highly metastatic ascites rat mammary adenocarcinoma has been implicated in cell surface changes contributing to xenotransplantability. p58gag is present in the cells in a plasma membrane- and microfilament-associated signal transduction particle containing Src and is phosphorylated on tyrosine. Overlay analyses and affinity chromatography with glutathione S-transferase (GST) fusion proteins of Src homology-3 (SH3) domains showed direct binding of the Src but not the Crk SH3 domain to p58gag. This association was confirmed by co-immunoprecipitation of partially purified p58gag from ascites cell lysates with platelet Src. Further, a GST-p58gag fusion protein bound full length c-Src from either platelets or c-Src-expressing insect cells. The GST-p58gag fusion protein, but not GST, was phosphorylated by platelet or insect cell-expressed c-Src, but not by a kinase negative c-Src variant. The binding of GST-p58gag to c-Src was almost completely abolished by a 50-fold excess of the GST-SH3 domain of Src, and a parallel decrease in tyrosine phosphorylation of p58gag was observed. These results demonstrate that p58gag is tyrosine-phosphorylated as a consequence of its specific association with c-Src via its SH3 domain. These observations suggest a mechanism by which Gag proteins may contribute to retroviral maturation or pathogenesis through binding and relocalization of SH3 domain-containing proteins such as Src-like tyrosine kinases to sites of association of microfilaments with the plasma membrane.[1]

References

 
WikiGenes - Universities