The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Enhancement of G2 checkpoint function by gelsolin transfection in human cancer cells.

We have previously reported that human gastric (TMK1) and urinary bladder (UMUC2) cancer cell lines show markedly reduced expression of an actin-regulatory protein, gelsolin [S. Moriya et al., (1994), Int. J. Oncol. 5, 1347-1351, M. Tanaka et al. (1995), Cancer Res. 55, 3228-3232]. When gelsolin expression is restored by transfection, cancer cells lost tumorigenicity in vivo [M. Tanaka et al. (1995), Cancer Res. 55, 3228-3232]. Here, we show that gelsolin-overexpressing TMK1 and UMUC2 cells are more resistant to UVC irradiation. Increased resistance is associated with increases in the proportion of cells in the G2 phase of the cell cycle compared to similarly treated control neotransfectants. After UVC irradiation, synchronized gelsolin-overexpressing UMUC2 cells had a prolonged S phase followed by delayed G2 accumulation compared to neotransfected UMUC2 cells as determined by cell cycle analysis. The levels of cyclin B1 and cdk1 histone H1 kinase activity in gelsolin transfectants remained low during S and early G2 phase and the production of diacylglycerol induced by UVC was reduced in gelsolin transfectants compared to neotransfectants. These observations suggest that gelsolin enhances G2 checkpoint function of cells through lipid metabolism, leading to UVC resistance. Considered together with recent evidence that radiation clastogenesis and chemical carcinogenesis are cell-cycle-dependent, down regulation of gelsolin may lead to the malignant transformation of human gastric or urinary bladder cancers by attenuating G2 checkpoint function.[1]

References

  1. Enhancement of G2 checkpoint function by gelsolin transfection in human cancer cells. Sakai, N., Ohtsu, M., Fujita, H., Koike, T., Kuzumaki, N. Exp. Cell Res. (1999) [Pubmed]
 
WikiGenes - Universities