The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Identification, molecular cloning, expression, and characterization of a cysteinyl leukotriene receptor.

The cysteinyl leukotrienes (CysLTs) have been implicated in the pathophysiology of inflammatory disorders, in particular asthma, for which the CysLT receptor antagonists pranlukast, zafirlukast, and montelukast, have been introduced recently as novel therapeutics. Here we report on the molecular cloning, expression, localization, and pharmacological characterization of a CysLT receptor (CysLTR), which was identified by ligand fishing of orphan seven-transmembrane-spanning, G protein-coupled receptors. This receptor, expressed in human embryonic kidney (HEK)-293 cells responded selectively to the individual CysLTs, LTC(4), LTD(4), or LTE(4), with a calcium mobilization response; the rank order potency was LTD(4) (EC(50) = 2.5 nM) > LTC(4) (EC(50) = 24 nM) > LTE(4) (EC(50) = 240 nM). Evidence was provided that LTE(4) is a partial agonist at this receptor. [(3)H]LTD(4) binding and LTD(4)-induced calcium mobilization in HEK-293 cells expressing the CysLT receptor were potently inhibited by the structurally distinct CysLTR antagonists pranlukast, montelukast, zafirlukast, and pobilukast; the rank order potency was pranlukast = zafirlukast > montelukast > pobilukast. LTD(4)-induced calcium mobilization in HEK-293 cells expressing the CysLT receptor was not affected by pertussis toxin, and the signal appears to be the result of the release from intracellular stores. Localization studies indicate the expression of this receptor in several tissues, including human lung, human bronchus, and human peripheral blood leukocytes. The discovery of this receptor, which has characteristics of the purported CysLT(1) receptor subtype, should assist in the elucidation of the pathophysiological roles of the CysLTs and in the identification of additional receptor subtypes.[1]

References

  1. Identification, molecular cloning, expression, and characterization of a cysteinyl leukotriene receptor. Sarau, H.M., Ames, R.S., Chambers, J., Ellis, C., Elshourbagy, N., Foley, J.J., Schmidt, D.B., Muccitelli, R.M., Jenkins, O., Murdock, P.R., Herrity, N.C., Halsey, W., Sathe, G., Muir, A.I., Nuthulaganti, P., Dytko, G.M., Buckley, P.T., Wilson, S., Bergsma, D.J., Hay, D.W. Mol. Pharmacol. (1999) [Pubmed]
 
WikiGenes - Universities