The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Blockade of Ba2+ current through human alpha1E channels by two steroid analogs, (+)-ACN and (+)-ECN.

Previous work suggests that different neuroactive steroids may exhibit some selectivity in their blocking effects on different high-voltage activated (HVA) Ca2+ currents. At least some of these effects appear to involve direct blocking actions on Ca2+ channels. Thus, direct investigation of the effects of various steroids on cloned Ca2+ channel variants may lead to the development of potent and selective small-molecular weight Ca2+ channel blockers. Here we examine the effects of two steroids on a cloned human alpha1E Ca2+ channel both with and without a beta3 subunit, when expressed in HEK293 cells. One compound, (+)-ACN, has been previously shown to block N-, Q-, and R-subtypes of HVA current without affecting L- and P-type current. The second compound, (+)-ECN, weakly blocks total HVA current in hippocampal neurons. (+)-ECN differs from (+)-ACN in lacking effects on GABA receptors, but shares with (+)-ACN an ability to partially inhibit T current in DRG neurons (Todorovic, S.M., Prakriya, M., Nakashima, Y.M. et al., 1998. Enantioselective blockade of T-type Ca2+ current in adult rat sensory neurons by a steroid lacking GABA-mimetic activity. Mol. Pharmacol. 54, 918-927). (+)-ACN can block 100% of Ba2+ current in HEK cells arising either from the alpha1E subunit (IC50 approximate to 10 microM) or the alpha1Ebeta3 combination (IC50 approximate to 5 microM), while (+)-ECN maximally blocks only about 80% of the alpha1E (10 microM) or alpha1Ebeta3 (16 microM) current. Blockade by (+)-ACN exhibits several differences from blockade by (+)-ECN. (+)-ACN increases the apparent rate of onset of inactivation, particularly for the alpha1E variant, slows recovery from inactivation, and more profoundly shifts the voltage-dependence of current availability for both alpha1E and alpha1Ebeta3 variants than does (+)-ECN. Although the complexity of the normal inactivation kinetics of alpha1E variants makes interpretation of the (+)-ACN-induced kinetic alterations difficult, the results suggest that the two steroids are to some extent acting by distinct mechanisms, and perhaps at different sites.[1]

References

  1. Blockade of Ba2+ current through human alpha1E channels by two steroid analogs, (+)-ACN and (+)-ECN. Nakashima, Y.M., Pereverzev, A., Schneider, T., Covey, D.F., Lingle, C.J. Neuropharmacology (1999) [Pubmed]
 
WikiGenes - Universities