The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Bix4 is activated directly by VegT and mediates endoderm formation in Xenopus development.

The maternal T-box gene VegT, whose transcripts are restricted to the vegetal hemisphere of the Xenopus embryo, plays an essential role in early development. Depletion of maternal VegT transcripts causes embryos to develop with no endoderm, while vegetal blastomeres lose the ability to induce mesoderm (Zhang, J., Houston, D. W., King, M. L., Payne, C., Wylie, C. and Heasman, J. (1998) Cell 94, 515-524). The targets of VegT, a transcription activator, must therefore include genes involved both in the specification of endoderm and in the production of mesoderm-inducing signals. We recently reported that the upstream regulatory region of the homeobox-containing gene Bix4 contains T-box binding sites. Here we show that expression of Bix4 requires maternal VegT and that two T-box binding sites are necessary and sufficient for mesodermal and endodermal expression of reporter genes driven by the Bix4 promoter in transgenic Xenopus embryos. Remarkably, a single T-box binding site is able to act as a mesoderm-specific enhancer when placed upstream of a minimal promoter. Finally, we show that Bix4 rescues the formation of endodermal markers in embryos in which VegT transcripts have been ablated but does not restore the ability of vegetal pole blastomeres to induce mesoderm. These results demonstrate that Bix4 acts directly downstream of VegT to specify endodermal differentiation in Xenopus embryos.[1]


  1. Bix4 is activated directly by VegT and mediates endoderm formation in Xenopus development. Casey, E.S., Tada, M., Fairclough, L., Wylie, C.C., Heasman, J., Smith, J.C. Development (1999) [Pubmed]
WikiGenes - Universities