The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Development of a fast transient potassium current in chick cochlear ganglion neurons.

Neurons of the cochlear ganglion are endowed with a set of voltage-gated ion channels that enable them to encode and transmit sound information from the cochlear receptors to the brain. The temporal expression pattern of the K+ currents in chick cochlear ganglion neurons during embryonic development was analyzed using whole-cell voltage clamp techniques. In acutely isolated neurons, slowly activating delayed rectifier K+ currents appear at embryonic day 7 (E7) and increase in amplitude during development. A fast activating, fast inactivating K+ current of the A type is first expressed at E10, increasing in amplitude thereafter. To investigate the possible role of neurotrophins in the induction of these K+ channels, neurons were grown in culture in the presence or absence of brain-derived neurotrophic factor (BDNF) or neurotrophin-3 (NT-3). Neurons isolated at E8 and grown in culture for 1 day exhibit a high expression of A-current, together with the outgrowth of neurites. A-currents are not seen in acutely dissociated neurons from age-matched embryos (E9) which lack neurites, cut off by the isolation procedure. This suggests a preferential neuritic location of the channels carrying the A-current. However, the level of expression of the K+ currents was independent of BDNF or NT-3 application. Similarly, neurons isolated at E10 and grown in culture for up to 4 days maintain the amplitude of the K+ currents independently of the presence of the neurotrophins. These results indicate that BDNF and NT-3 may not directly regulate the expression of K+ channels in chick cochlear ganglion neurons. The notable expression of the fast inactivating A-current suggests that it plays a significant role in the modulation of synaptic efficacy and the encoding of auditory stimuli.[1]

References

 
WikiGenes - Universities