The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

BDNF  -  brain-derived neurotrophic factor

Gallus gallus

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of BDNF

  • Following acoustic trauma, regenerated hair cells acquired BDNF mRNA expression at early stages of differentiation [1].
  • These results indicate that BDNF and NT-3 may not directly regulate the expression of K+ channels in chick cochlear ganglion neurons [2].
  • Analysis of motoneuron numbers indicated that both BDNF and GDNF provided protection to developing spinal cord motoneurons from ethanol toxicity, restoring motoneuron numbers to control levels [3].

Psychiatry related information on BDNF


High impact information on BDNF


Biological context of BDNF


Anatomical context of BDNF


Associations of BDNF with chemical compounds


Physical interactions of BDNF


Regulatory relationships of BDNF

  • Truncated TrkB receptors may regulate the BDNF concentration available to neurites, and they might have an important role during reinnervation [1].
  • A similar high level of neurotrophin-3 neither promotes the survival of BDNF-dependent ventrolateral trigeminal ganglion neurons nor affects the dose response of these neurons to BDNF [21].

Other interactions of BDNF


Analytical, diagnostic and therapeutic context of BDNF

  • After injection of all-trans RA onto the chorio-allantoic membrane of stage E16 chick embryos, axonal regeneration was monitored in organ cultures supplemented with BDNF [17].
  • Amacrine cells rather than RGC were the main source of BDNF mRNA in the ganglion cell layer, as determined by in situ hybridization that was combined with retrograde labeling of RGC and destruction of RGC by optic stalk transection, followed by quantitative RT-PCR [11].
  • To explore which region(s) within these neurotrophic factors might determine their differential actions on various subpopulations of peripheral neurons, a systematic series (homolog-scanning mutagenesis) of chimeric NGF/BDNF molecules was prepared using PCR overlap-extension techniques [25].


  1. Expression of neurotrophins and Trk receptors in the developing, adult, and regenerating avian cochlea. Pirvola, U., Hallböök, F., Xing-Qun, L., Virkkala, J., Saarma, M., Ylikoski, J. J. Neurobiol. (1997) [Pubmed]
  2. Development of a fast transient potassium current in chick cochlear ganglion neurons. García-Díaz, J.F. Hear. Res. (1999) [Pubmed]
  3. Neurotrophic factors BDNF and GDNF protect embryonic chick spinal cord motoneurons from ethanol neurotoxicity in vivo. Bradley, D.M., Beaman, F.D., Moore, D.B., Kidd, K., Heaton, M.B. Brain Res. Dev. Brain Res. (1999) [Pubmed]
  4. Memory consolidation in day-old chicks requires BDNF but not NGF or NT-3; an antisense study. Johnston, A.N., Rose, S.P. Brain Res. Mol. Brain Res. (2001) [Pubmed]
  5. Brain-derived neurotrophic factor is critically involved in thermal-experience-dependent developmental plasticity. Katz, A., Meiri, N. J. Neurosci. (2006) [Pubmed]
  6. Role of brain-derived neurotrophic factor and presynaptic proteins in passive avoidance learning in day-old domestic chicks. Johnston, A.N., Clements, M.P., Rose, S.P. Neuroscience (1999) [Pubmed]
  7. Brain-derived neurotrophic factor rescues developing avian motoneurons from cell death. Oppenheim, R.W., Yin, Q.W., Prevette, D., Yan, Q. Nature (1992) [Pubmed]
  8. Positive and negative effects of neurotrophins on the isthmo-optic nucleus in chick embryos. von Bartheld, C.S., Kinoshita, Y., Prevette, D., Yin, Q.W., Oppenheim, R.W., Bothwell, M. Neuron (1994) [Pubmed]
  9. Neuronal survival induced by neurotrophins requires calmodulin. Egea, J., Espinet, C., Soler, R.M., Dolcet, X., Yuste, V.J., Encinas, M., Iglesias, M., Rocamora, N., Comella, J.X. J. Cell Biol. (2001) [Pubmed]
  10. TGF-beta modulates programmed cell death in the retina of the developing chick embryo. Dünker, N., Schuster, N., Krieglstein, K. Development (2001) [Pubmed]
  11. Contributions of the optic tectum and the retina as sources of brain-derived neurotrophic factor for retinal ganglion cells in the chick embryo. Herzog, K.H., von Bartheld, C.S. J. Neurosci. (1998) [Pubmed]
  12. Control of early cell death by BDNF in the chick retina. Frade, J.M., Bovolenta, P., Martínez-Morales, J.R., Arribas, A., Barbas, J.A., Rodríguez-Tébar, A. Development (1997) [Pubmed]
  13. Spontaneous retinal activity modulates BDNF trafficking in the developing chick visual system. Chytrova, G., Johnson, J.E. Mol. Cell. Neurosci. (2004) [Pubmed]
  14. Neurotrophic factors modulate hair cells and their potassium currents in chick otocyst explants. Sokolowski, B.H., Csus, J., Hafez, O.I., Haggerty, H.S. Eur. J. Neurosci. (1999) [Pubmed]
  15. Neurotrophins and other growth factors in the generation of retinal neurons. Frade, J.M., Bovolenta, P., Rodríguez-Tébar, A. Microsc. Res. Tech. (1999) [Pubmed]
  16. Quantitative analysis of long-term survival and neuritogenesis in vitro: cochleovestibular ganglion of the chick embryo in BDNF, NT-3, NT-4/5, and insulin. Sokolowski, B.H. Exp. Neurol. (1997) [Pubmed]
  17. Retinoic acid increases BDNF-dependent regeneration of chick retinal ganglion cells in vitro. Mey, J., Rombach, N. Neuroreport (1999) [Pubmed]
  18. God's organism? The chick as a model system for memory studies. Rose, S.P. Learn. Mem. (2000) [Pubmed]
  19. Distribution of BDNF and trkB mRNA in the otic region of 3.5 and 4.5 day chick embryos as revealed with a combination of in situ hybridization and tract tracing. Hallböök, F., Fritzsch, B. Int. J. Dev. Biol. (1997) [Pubmed]
  20. Expression and binding characteristics of the BDNF receptor chick trkB. Dechant, G., Biffo, S., Okazawa, H., Kolbeck, R., Pottgiesser, J., Barde, Y.A. Development (1993) [Pubmed]
  21. High specificity of neurotrophins in the embryonic chicken trigeminal system. Pinon, L.G., Robinson, M., Davies, A.M. Eur. J. Neurosci. (1995) [Pubmed]
  22. BDNF and NT-3 regulation of trkB and trkC mRNA levels in the developing chick spinal cord. Gibbons, A.S., Bailey, K.A. Neurosci. Lett. (2005) [Pubmed]
  23. Differential effects of the trophic factors BDNF, NT-4, GDNF, and IGF-I on the isthmo-optic nucleus in chick embryos. Janiga, T.A., Rind, H.B., von Bartheld, C.S. J. Neurobiol. (2000) [Pubmed]
  24. Neurotrophins rapidly modulate growth cone response to the axon guidance molecule, collapsin-1. Tuttle, R., O'Leary, D.D. Mol. Cell. Neurosci. (1998) [Pubmed]
  25. NGF/BDNF chimeric proteins: analysis of neurotrophin specificity by homolog-scanning mutagenesis. Suter, U., Angst, C., Tien, C.L., Drinkwater, C.C., Lindsay, R.M., Shooter, E.M. J. Neurosci. (1992) [Pubmed]
WikiGenes - Universities