Regulation of prostaglandin H2 synthase activity by nitrogen oxides.
Nitric oxide and its derivatives have been shown to both activate and inhibit prostaglandin H(2) synthase 1 (PGHS-1). We set out to determine the mechanisms by which different nitrogen oxide derivatives modulate PGHS-1 activity. To this end, we show that 3-morpholinosydnonimine hydrochloride (SIN-1), a compound capable of generating peroxynitrite, activates purified PGHS-1 and also stimulates PGE(2) production in arterial smooth muscle cells in the presence of exogenous arachidonic acid. The effect of SIN-1 in smooth muscle cells was abrogated by superoxide and peroxynitrite inhibitors, which supports the hypothesis that peroxynitrite is an activating species of PGHS-1. Indeed, authentic peroxynitrite also induced PGE(2) production in arachidonic acid-stimulated cells. In contrast, when cells were exposed to the nitric oxide-releasing compound 1-hydroxy-2-oxo-3-[(methylamino)propyl]-3-methyl-1-triazene (NOC-7), PGHS-1 enzyme activity was inhibited in the presence of exogenous arachidonic acid. Finally, in lipid-loaded smooth muscle cells, we demonstrate that SIN-1 stimulates arachidonic acid-induced PGE(2) production; albeit, the extent of activation is reduced compared to that under normal conditions. These results indicate that formation of peroxynitrite is a key intermediary step in PGHS-1 activation. However, other forms of NO(x)() inhibit PGHS-1. These results may have implications in the regulation of vascular function and tone in normal and atherosclerotic arteries.[1]References
- Regulation of prostaglandin H2 synthase activity by nitrogen oxides. Upmacis, R.K., Deeb, R.S., Hajjar, D.P. Biochemistry (1999) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg