The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Compound A uptake and metabolism to mercapturic acids and 3,3,3-trifluoro-2-fluoromethoxypropanoic acid during low-flow sevoflurane anesthesia: biomarkers for exposure, risk assessment, and interspecies comparison.

BACKGROUND: Sevoflurane is degraded during low-flow anesthesia to fluoromethyl-2,2-difluoro-1-(trifluoromethyl)vinyl ether ("compound A"), which causes renal necrosis in rats but is not known to cause nephrotoxicity in surgical patients. Compound A is metabolized to glutathione S-conjugates and then to cysteine S-conjugates, which are N-acetylated to mercapturic acids (detoxication pathway), or metabolized by renal beta-lyase to reactive intermediates (toxification pathway) and excreted as 3,3,3-trifluoro-2-fluoromethoxypropanoic acid. This investigation quantified compound A metabolites in urine after low-flow sevoflurane administration, to assess relative flux via these two pathways. METHODS: Patients (n = 21) with normal renal function underwent low-flow (11 min) sevoflurane anesthesia designed to maximize compound A formation. Inspiratory, expiratory, and alveolar compound A concentrations were quantified. Urine mercapturic acids and 3,3,3-trifluoro-2-fluoromethoxypropanoic acid concentrations were measured by gas chromatography and mass spectrometry. RESULTS: Sevoflurane exposure was 3.7 +/- 2.0 MAC-h. Inspired compound A maximum was 29 +/- 14 ppm; area under the inspired concentration versus time curve (AUCinsp) was 78 +/- 58 ppm x h. Compound A dose, calculated from pulmonary uptake, was 0.39 +/- 0.35 mmol (4.8 +/- 4.0 micromol/kg) and correlated with AUCinsp (r2 = 0.84, P < 0.001). Mercapturic acids excretion was complete after 2 days, whereas 3,3,3-trifluoro-2-fluoromethoxypropanoic acid excretion continued for 3 days in some patients. Total (3-day) mercapturates and fluoromethoxypropanoic acid excretion was 95 +/- 49 and 294 +/- 416 micromol, respectively (1.2 +/- 0.6 and 3.6 +/- 5.0 micromol/kg). CONCLUSION: Compound A doses during 3.7 MAC-h, low-flow sevoflurane administration in humans are substantially less than the threshold for renal toxicity in rats (200 micromol/kg). Compound A metabolites quantification may provide a biomarker for compound A exposure and relative metabolism via toxification and detoxication pathways. Compared with previous investigations, relative metabolic flux (fluoromethoxypropanoic acid/mercapturates) through the toxification pathway was sixfold greater in rats than in humans. Species differences in dose and metabolism may influence compound A renal effects.[1]


WikiGenes - Universities