The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Sevorane     1,1,1,3,3,3-hexafluoro-2...

Synonyms: Sevofrane, Sojourn, Petrem, Sevofluran, Ultane, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Sevofluran

 

Psychiatry related information on Sevofluran

 

High impact information on Sevofluran

 

Chemical compound and disease context of Sevofluran

 

Biological context of Sevofluran

 

Anatomical context of Sevofluran

 

Associations of Sevofluran with other chemical compounds

 

Gene context of Sevofluran

  • While almost anesthetics are metabolized by the cytochrome P450 (CYP) 3A4, some major volatile ones such as halothane and sevoflurane are metabolized by CYP2E1 in humans [29].
  • Death signaling was not mediated via the Fas/CD95 receptor pathway because neither anti-Fas/CD95 receptor antagonism nor FADD deficiency or caspase-8 deficiency were able to attenuate sevoflurane-mediated apoptosis [30].
  • Our data suggest that sevoflurane anaesthesia transiently produced an impaired AQP2 response to an increase in intrinsic AVP [31].
  • These data suggest that sevoflurane-produced inhibition of Ang II-induced vasoconstriction is, at least in part, caused by depression of the p44/42 MAPK-mediated signaling pathway [32].
  • Sevoflurane-mediated suppression of AP-1 could be observed in primary CD3 lymphocytes from healthy volunteers, was time-dependent and concentration-dependent, and occurred at concentrations that are clinically achieved [33].
 

Analytical, diagnostic and therapeutic context of Sevofluran

  • Fifteen patients undergoing comparable operations with SF (approximately one-half as toxic as IF in vitro) and nine patients undergoing regional/ local anesthesia were controls [34].
  • METHODS: Twenty patients (American Society of Anesthesiologists physical status I), aged 20-68 yr undergoing body surface surgery with general anesthesia with sevoflurane were enrolled [35].
  • The authors hypothesized that the vaporizer settings required to maintain constant end-expired sevoflurane concentration (Etsevo) during minimal-flow anesthesia (MFA, fresh gas flow of 0.5 l/min) or low-flow anesthesia (LFA, fresh gas flow of 1 l/min) would be lower when sevoflurane is used in oxygen-nitrous oxide than in oxygen [36].
  • Influence of nitrous oxide on minimum alveolar concentration of sevoflurane for laryngeal mask insertion in children [37].
  • Prediction probability values for EEG parameters and sevoflurane concentration to predict depth of sedation and anesthesia were also calculated [38].

References

  1. Cardiac arrhythmias in children during outpatient general anaesthesia for dentistry: a prospective randomised trial. Blayney, M.R., Malins, A.F., Cooper, G.M. Lancet (1999) [Pubmed]
  2. Renal toxicity with sevoflurane: a storm in a teacup? Gentz, B.A., Malan, T.P. Drugs (2001) [Pubmed]
  3. Sevoflurane. A review of its pharmacodynamic and pharmacokinetic properties and its clinical use in general anaesthesia. Patel, S.S., Goa, K.L. Drugs (1996) [Pubmed]
  4. Clinical pharmacokinetics of sevoflurane. Behne, M., Wilke, H.J., Harder, S. Clinical pharmacokinetics. (1999) [Pubmed]
  5. Reactive oxygen species precede protein kinase C-delta activation independent of adenosine triphosphate-sensitive mitochondrial channel opening in sevoflurane-induced cardioprotection. Bouwman, R.A., Musters, R.J., van Beek-Harmsen, B.J., de Lange, J.J., Boer, C. Anesthesiology (2004) [Pubmed]
  6. Does the amygdala mediate anesthetic-induced amnesia? Basolateral amygdala lesions block sevoflurane-induced amnesia. Alkire, M.T., Nathan, S.V. Anesthesiology (2005) [Pubmed]
  7. Reinforcing, subjective, and psychomotor effects of sevoflurane and nitrous oxide in moderate-drinking healthy volunteers. Zacny, J.P., Janiszewski, D., Sadeghi, P., Black, M.L. Addiction (1999) [Pubmed]
  8. The effects of anesthesia with increasing end-expiratory concentrations of sevoflurane on midlatency auditory evoked potentials. Schwender, D., Conzen, P., Klasing, S., Finsterer, U., Pöppel, E., Peter, K. Anesth. Analg. (1995) [Pubmed]
  9. Dose-related effect of sevoflurane sedation on higher control of eye movements and decision making. Nouraei, S.A., De Pennington, N., Jones, J.G., Carpenter, R.H. British journal of anaesthesia. (2003) [Pubmed]
  10. The effects of a volatile anaesthetic on the excitability of human corticospinal axons. Burke, D., Bartley, K., Woodforth, I.J., Yakoubi, A., Stephen, J.P. Brain (2000) [Pubmed]
  11. Hypersensitivity of laryngeal C-fibers induced by volatile anesthetics in young guinea pigs. Mutoh, T., Tsubone, H. Am. J. Respir. Crit. Care Med. (2003) [Pubmed]
  12. Anti-inflammatory and antinecrotic effects of the volatile anesthetic sevoflurane in kidney proximal tubule cells. Lee, H.T., Kim, M., Jan, M., Emala, C.W. Am. J. Physiol. Renal Physiol. (2006) [Pubmed]
  13. Sevoflurane and isoflurane protect against bronchospasm in dogs. Mitsuhata, H., Saitoh, J., Shimizu, R., Takeuchi, H., Hasome, N., Horiguchi, Y. Anesthesiology (1994) [Pubmed]
  14. Cardioprotective effects of propofol and sevoflurane in ischemic and reperfused rat hearts: role of K(ATP) channels and interaction with the sodium-hydrogen exchange inhibitor HOE 642 (cariporide). Mathur, S., Farhangkhgoee, P., Karmazyn, M. Anesthesiology (1999) [Pubmed]
  15. Sevoflurane and halothane reduce focal ischemic brain damage in the rat. Possible influence on thermoregulation. Warner, D.S., McFarlane, C., Todd, M.M., Ludwig, P., McAllister, A.M. Anesthesiology (1993) [Pubmed]
  16. Role of the beta1-adrenergic pathway in anesthetic and ischemic preconditioning against myocardial infarction in the rabbit heart in vivo. Lange, M., Smul, T.M., Blomeyer, C.A., Redel, A., Klotz, K.N., Roewer, N., Kehl, F. Anesthesiology (2006) [Pubmed]
  17. The effects of fentanyl on sevoflurane requirements for loss of consciousness and skin incision. Katoh, T., Ikeda, K. Anesthesiology (1998) [Pubmed]
  18. Use of a modified cyclodextrin host for the enantioselective detection of a halogenated diether as chiral guest via optical and electrical transducers. Kieser, B., Fietzek, C., Schmidt, R., Belge, G., Weimar, U., Schurig, V., Gauglitz, G. Anal. Chem. (2002) [Pubmed]
  19. Effect of resuscitative mild hypothermia on glutamate and dopamine release, apoptosis and ischaemic brain damage in the endothelin-1 rat model for focal cerebral ischaemia. Van Hemelrijck, A., Vermijlen, D., Hachimi-Idrissi, S., Sarre, S., Ebinger, G., Michotte, Y. J. Neurochem. (2003) [Pubmed]
  20. Comparative hemodynamic depression of sevoflurane versus halothane in infants: an echocardiographic study. Wodey, E., Pladys, P., Copin, C., Lucas, M.M., Chaumont, A., Carre, P., Lelong, B., Azzis, O., Ecoffey, C. Anesthesiology (1997) [Pubmed]
  21. Halothane, isoflurane and sevoflurane inhibit NADH:ubiquinone oxidoreductase (complex I) of cardiac mitochondria. Hanley, P.J., Ray, J., Brandt, U., Daut, J. J. Physiol. (Lond.) (2002) [Pubmed]
  22. Volatile anaesthetic effects on Na+-Ca2+ exchange in rat cardiac myocytes. Seckin, I., Sieck, G.C., Prakash, Y.S. J. Physiol. (Lond.) (2001) [Pubmed]
  23. Sevoflurane but not propofol preserves myocardial function in coronary surgery patients. De Hert, S.G., ten Broecke, P.W., Mertens, E., Van Sommeren, E.W., De Blier, I.G., Stockman, B.A., Rodrigus, I.E. Anesthesiology (2002) [Pubmed]
  24. Effects of sevoflurane on the intracellular Ca2+ transient in ferret cardiac muscle. Bartunek, A.E., Housmans, P.R. Anesthesiology (2000) [Pubmed]
  25. An isothermal titration calorimetry study on the binding of four volatile general anesthetics to the hydrophobic core of a four-alpha-helix bundle protein. Zhang, T., Johansson, J.S. Biophys. J. (2003) [Pubmed]
  26. Quantitative determination of vapor-phase compound A in sevoflurane anesthesia using gas chromatography-mass spectrometry. Bouche, M.P., Van Bocxlaer, J.F., Rolly, G., Versichelen, L.F., Struys, M.M., Mortier, E., De Leenheer, A.P. Clin. Chem. (2001) [Pubmed]
  27. Propofol and sevoflurane depress spinal neurons in vitro via different molecular targets. Grasshoff, C., Antkowiak, B. Anesthesiology (2004) [Pubmed]
  28. Opioid-volatile anesthetic synergy: a response surface model with remifentanil and sevoflurane as prototypes. Manyam, S.C., Gupta, D.K., Johnson, K.B., White, J.L., Pace, N.L., Westenskow, D.R., Egan, T.D. Anesthesiology (2006) [Pubmed]
  29. Inhibition of cytochrome P450 2E1 by propofol in human and porcine liver microsomes. Lejus, C., Fautrel, A., Mallédant, Y., Guillouzo, A. Biochem. Pharmacol. (2002) [Pubmed]
  30. Volatile anesthetics induce caspase-dependent, mitochondria-mediated apoptosis in human T lymphocytes in vitro. Loop, T., Dovi-Akue, D., Frick, M., Roesslein, M., Egger, L., Humar, M., Hoetzel, A., Schmidt, R., Borner, C., Pahl, H.L., Geiger, K.K., Pannen, B.H. Anesthesiology (2005) [Pubmed]
  31. Sevoflurane anaesthesia causes a transient decrease in aquaporin-2 and impairment of urine concentration. Morita, K., Otsuka, F., Ogura, T., Takeuchi, M., Mizobuchi, S., Yamauchi, T., Makino, H., Hirakawa, M. British journal of anaesthesia. (1999) [Pubmed]
  32. The inhibitory effects of sevoflurane on angiotensin II- induced, p44/42 mitogen-activated protein kinase-mediated contraction of rat aortic smooth muscle. Yu, J., Mizumoto, K., Tokinaga, Y., Ogawa, K., Hatano, Y. Anesth. Analg. (2005) [Pubmed]
  33. Sevoflurane inhibits phorbol-myristate-acetate-induced activator protein-1 activation in human T lymphocytes in vitro: potential role of the p38-stress kinase pathway. Loop, T., Scheiermann, P., Doviakue, D., Musshoff, F., Humar, M., Roesslein, M., Hoetzel, A., Schmidt, R., Madea, B., Geiger, K.K., Pahl, H.L., Pannen, B.H. Anesthesiology (2004) [Pubmed]
  34. Spectrum and subcellular determinants of fluorinated anesthetic-mediated proximal tubular injury. Lochhead, K.M., Kharasch, E.D., Zager, R.A. Am. J. Pathol. (1997) [Pubmed]
  35. Area under the plasma concentration-time curve of inorganic fluoride following sevoflurane anesthesia correlates with CYP2E1 mRNA level in mononuclear cells. Hase, I., Imaoka, S., Oda, Y., Hiroi, T., Nakamoto, T., Asada, A., Funae, Y. Anesthesiology (2000) [Pubmed]
  36. Effect of N2O on sevoflurane vaporizer settings during minimal- and low-flow anesthesia. Hendrickx, J.F., Coddens, J., Callebaut, F., Artico, H., Deloof, T., Demeyer, I., De Wolf, A.M. Anesthesiology (2002) [Pubmed]
  37. Influence of nitrous oxide on minimum alveolar concentration of sevoflurane for laryngeal mask insertion in children. Kihara, S., Yaguchi, Y., Inomata, S., Watanabe, S., Brimacombe, J.R., Taguchi, N., Komatsuzaki, T. Anesthesiology (2003) [Pubmed]
  38. Electroencephalographic derivatives as a tool for predicting the depth of sedation and anesthesia induced by sevoflurane. Katoh, T., Suzuki, A., Ikeda, K. Anesthesiology (1998) [Pubmed]
 
WikiGenes - Universities