The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Cloning and characterization of a bifunctional leukotriene A(4) hydrolase from Saccharomyces cerevisiae.

In mammals, leukotriene A(4) hydrolase is a bifunctional zinc metalloenzyme that catalyzes hydrolysis of leukotriene A(4) into the proinflammatory leukotriene B(4) and also possesses an arginyl aminopeptidase activity. We have cloned, expressed, and characterized a protein from Saccharomyces cerevisiae that is 42% identical to human leukotriene A(4) hydrolase. The purified protein is an anion-activated leucyl aminopeptidase, as assessed by p-nitroanilide substrates, and does not hydrolyze leukotriene A(4) into detectable amounts of leukotriene B(4). However, the S. cerevisiae enzyme can utilize leukotriene A(4) as substrate to produce a compound identified as 5S,6S-dihydroxy-7,9-trans-11, 14-cis-eicosatetraenoic acid. Both catalytic activities are inhibited by 3-(4-benzyloxyphenyl)-2-(R)-amino-1-propanethiol (thioamine), a competitive inhibitor of human leukotriene A(4) hydrolase. Furthermore, the peptide cleaving activity of the S. cerevisiae enzyme was stimulated approximately 10-fold by leukotriene A(4) with kinetics indicating the presence of a lipid binding site. Nonenzymatic hydrolysis products of leukotriene A(4), leukotriene B(4), arachidonic acid, or phosphatidylcholine were without effect. Moreover, leukotriene A(4) could displace the inhibitor thioamine and restore maximal aminopeptidase activity, indicating that the leukotriene A(4) binding site is located at the active center of the enzyme. Hence, the S. cerevisiae leukotriene A(4) hydrolase is a bifunctional enzyme and appears to be an early ancestor to mammalian leukotriene A(4) hydrolases.[1]

References

 
WikiGenes - Universities