The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Transgenic rescue of SNAP-25 restores dopamine-modulated synaptic transmission in the coloboma mutant.

Many of the molecular components constituting the exocytotic machinery responsible for neurotransmitter release have been identified, yet the precise role played by these proteins in synaptic transmission, and their impact on neural function, has not been resolved. The mouse mutation coloboma is a contiguous gene defect that leads to electrophysiological and behavioral deficits and includes the gene-encoding SNAP-25, an integral component of the synaptic vesicle-docking/fusion core complex. The involvement of SNAP-25 in the hyperactive behavior of coloboma mice, which can be ameliorated by the indirect dopaminergic agonist, amphetamine, has been demonstrated by genetic rescue using a SNAP-25 transgene. Coloboma mice also exhibit increased recurrent inhibition, reduced theta rhythm by tail-pinch and reduced long-term potentiation in the hippocampal dentate gyrus that, as the hyperkinesis seen in these mutants suggests, may reflect impaired monoaminergic modulation. We sought to identify neurophysiological correlates of the rescued hyperactivity within hippocampal synaptic circuitry of SNAP-25 transgenic coloboma mutant mice. In contrast to the differences between coloboma and wild-type mice, there was no significant difference in the duration or amplitude of theta rhythmic activity (4-6 Hz) induced by tail-pinch (10 s), afferent-evoked field potentials, or paired-pulse responses recorded in the dentate gyrus of SNAP-25 transgenic coloboma and wild-type mice. Amphetamine (3.0 mg/kg, i.p.) produced disinhibition of dentate paired-pulse responses in both SNAP-25 transgenic and wild-type mice but increased inhibition in non-transgenic coloboma mice. These findings support the hypothesis that alteration of monoaminergic neurotransmission, which can be reversed by the indirect agonist, amphetamine, is particularly sensitive to alterations in the expression of SNAP-25.[1]


  1. Transgenic rescue of SNAP-25 restores dopamine-modulated synaptic transmission in the coloboma mutant. Steffensen, S.C., Henriksen, S.J., Wilson, M.C. Brain Res. (1999) [Pubmed]
WikiGenes - Universities