Patterning the zebrafish axial skeleton requires early chordin function.
Members of the bone morphogenetic protein (BMP) family actively promote ventral cell fates, such as epidermis and blood, in the vertebrate gastrula. More dorsally, the organizer region counteracts BMP signalling through secretion of BMP- binding antagonists chordin and noggin, allowing dorsally derived tissues such as neurectoderm and somitic muscle to develop. BMPs also function in skeletal development and regeneration of bone following injury. Noggin antagonism is thought to prevent osteogenesis at sites of joint formation, whereas chordin has not yet been implicated in skeletogenesis. Analyses of zebrafish mutants have confirmed the action of chordin ( chd) in opposing ventralizing signals at gastrulation. Some ventralized mutants recover and develop into fertile adults, thereby revealing a requirement for chd function for the later processes of fin and caudal skeletal patterning. We observe in mutants the misexpression of genes encoding BMPs and putative downstream genes, and ectopic sclerotomal cells. Through injections of chd mRNA into the early embryo, we restored wild-type gene expression patterns, and the resultant fish, although genotypically mutant, developed normal axial skeletons and fins. Our results demonstrate that chordin function during gastrulation is important for the correct morphogenesis of the adult zebrafish skeleton.[1]References
- Patterning the zebrafish axial skeleton requires early chordin function. Fisher, S., Halpern, M.E. Nat. Genet. (1999) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg