The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

A testis-specific transcription factor IIA (TFIIAtau) stimulates TATA-binding protein-DNA binding and transcription activation.

The general transcription factor IIA ( TFIIA) stimulates RNA polymerase II-specific transcription by stabilizing the association of the TATA- binding protein (TBP) with promoter DNA, inhibiting repressors of TBP, and facilitating activator-dependent conformational changes in the preinitiation complex. TFIIA is encoded by two genes (alphabeta and gamma) that are highly conserved between human and yeast. Here, we report the molecular cloning of a novel human gene that shares significant sequence similarity to the evolutionarily conserved amino- and carboxyl-terminal domains of TFIIAalphabeta. The TFIIA-related protein (TFIIAtau) was cloned from a testis-specific cDNA library, and its mRNA is expressed predominantly in testis tissue as determined by expressed sequence tag data base analysis and Northern blotting analysis. The TFIIA complex reconstituted with the testis-specific subunit, TFIIA (tau+gamma), formed the TFIIA-TBP-TATA DNA (T-A) and TFIIA-TFIIB-TBP-TATA DNA (TAB) complexes indistinguishably from TFIIA (alphabeta+gamma). TFIIA (tau+gamma) supported basal and activated transcription for most activators in reactions reconstituted with TFIIA-depleted nuclear extracts. However, TFIIA (tau+gamma) was reduced relative to TFIIA (alphabeta+gamma) for stimulating transcription with at least one activator, suggesting that these two forms of TFIIA have activator specificity. These results suggest that TFIIAtau may be important for testis-specific transcription regulation.[1]

References

 
WikiGenes - Universities