The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Genomic interval engineering of mice identifies a novel modulator of triglyceride production.

To accelerate the biological annotation of novel genes discovered in sequenced regions of mammalian genomes, we are creating large deletions in the mouse genome targeted to include clusters of such genes. Here we describe the targeted deletion of a 450-kb region on mouse chromosome 11, which, based on computational analysis of the deleted murine sequences and human 5q orthologous sequences, codes for nine putative genes. Mice homozygous for the deletion had a variety of abnormalities, including severe hypertriglyceridemia, hepatic and cardiac enlargement, growth retardation, and premature mortality. Analysis of triglyceride metabolism in these animals demonstrated a several-fold increase in hepatic very-low density lipoprotein triglyceride secretion, the most prevalent mechanism responsible for hypertriglyceridemia in humans. A series of mouse BAC and human YAC transgenes covering different intervals of the 450-kb deleted region were assessed for their ability to complement the deletion induced abnormalities. These studies revealed that OCTN2, a gene recently shown to play a role in carnitine transport, was able to correct the triglyceride abnormalities. The discovery of this previously unappreciated relationship between OCTN2, carnitine, and hepatic triglyceride production is of particular importance because of the clinical consequence of hypertriglyceridemia and the paucity of genes known to modulate triglyceride secretion.[1]

References

  1. Genomic interval engineering of mice identifies a novel modulator of triglyceride production. Zhu, Y., Jong, M.C., Frazer, K.A., Gong, E., Krauss, R.M., Cheng, J.F., Boffelli, D., Rubin, E.M. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
 
WikiGenes - Universities