The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

BTG gene expression in the p53-dependent and -independent cellular response to DNA damage.

Exposure of mammalian cells to genotoxic agents evokes a complex cellular response. An ordered series of molecular events is necessary to sense DNA damage, transduce the signal, and ultimately delay the cell cycle or trigger apoptosis. Recently, we have shown that BTG2/TIS21 gene expression was induced in response to DNA damage through a p53-dependent pathway. This gene belongs to a newly identified family of structurally related genes whose other known human members are BTG1, BTG3, and Tob. To define the respective involvement of these four related genes in the cellular response to DNA damage, we studied their expression in human cell lines after a variety of genotoxic treatments. Our results demonstrated that were BTG1, BTG2/TIS21, and Tob genes the DNA damage--inducible genes. However, BTG2/TIS21 appeared to be the only p53-transcriptional target gene. We speculate that BTG proteins may play a coordinate role in a general transduction pathway that is induced in response to DNA damage. It has been previously described that recombinant BTG1 and BTG2/TIS21 can physically interact with PRMT1, an arginine methyl transferase, suggesting that BTG1 and BTG2/TIS21 induction may lead to posttranslational modifications of cellular proteins. In support of this hypothesis, we showed that the endogenous induction of BTG1 and BTG2 after genotoxic treatment was correlated with a modulation of protein methylation.[1]


  1. BTG gene expression in the p53-dependent and -independent cellular response to DNA damage. Cortes, U., Moyret-Lalle, C., Falette, N., Duriez, C., Ghissassi, F.E., Barnas, C., Morel, A.P., Hainaut, P., Magaud, J.P., Puisieux, A. Mol. Carcinog. (2000) [Pubmed]
WikiGenes - Universities