The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

U50,488 protection against HIV-1-related neurotoxicity: involvement of quinolinic acid suppression.

The pathogenesis of human immunodeficiency virus type 1 (HIV-1) encephalopathy has been associated with multiple factors including the neurotoxin quinolinate (an endogenous N-methyl-D-aspartate [NMDA] receptor ligand) and viral proteins. The kappa opioid receptor ( KOR) agonist U50,488 recently has been shown to inhibit HIV-1 p24 antigen production in acutely infected microglial cell cultures. Using primary human brain cell cultures in the present study, we found that U50,488 also suppressed in a dose-dependent manner the neurotoxicity mediated by supernatants derived from HIV-1-infected microglia. This neuroprotective effect of U50,488 was blocked by the KOR selective antagonist nor-binaltorphimine. The neurotoxic activity of the supernatants from HIV-1-infected microglia was blocked by the NMDA receptor antagonists 2-amino-5-phosphonovalerate and MK-801. HIV-1 infection of microglial cell cultures induced the release of quinolinate, and U50,488 dose-dependently suppressed quinolinate release by infected microglial cell cultures with a corresponding inhibition of HIV-1 p24 antigen levels. These findings suggest that the kappa opioid ligand U50,488 may have therapeutic potential in HIV-1 encephalopathy by attenuating microglial cell production of the neurotoxin quinolinate and viral proteins.[1]


  1. U50,488 protection against HIV-1-related neurotoxicity: involvement of quinolinic acid suppression. Chao, C.C., Hu, S., Gekker, G., Lokensgard, J.R., Heyes, M.P., Peterson, P.K. Neuropharmacology (2000) [Pubmed]
WikiGenes - Universities