The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

quinolinate     pyridine-2,3-dicarboxylic acid

Synonyms: TPC-PY101, PubChem8035, Tocris-0225, Lopac-P63204, SureCN69230, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of quinolinic acid

 

Psychiatry related information on quinolinic acid

 

High impact information on quinolinic acid

  • Human CNTF was found to exert a neuroprotective effect on several populations of striatal cells, including GABAergic, cholinergic and diaphorase-positive neurons which were all destined to die following administration of quinolinic acid [9].
  • One week later, monkeys received unilateral injections of quinolinic acid into the previously implanted striatum to reproduce the neuropathology seen in Huntington's disease [9].
  • No evidence for preservation of somatostatin-containing neurons after intrastriatal injections of quinolinic acid [10].
  • Schwarcz and colleagues have shown that quinolinic acid (QA) can produce axon-sparing lesions similar to those observed in HD [4].
  • The pathway includes two compounds, quinolinic acid and kynurenic acid, which are remarkably specific in their pharmacological profiles: one is a selective agonist at receptors sensitive to NMDA, whereas the other is a selective antagonist at low concentrations at the strychnine-resistant glycine modulatory site associated with the NMDA receptor [11].
 

Chemical compound and disease context of quinolinic acid

 

Biological context of quinolinic acid

 

Anatomical context of quinolinic acid

 

Associations of quinolinic acid with other chemical compounds

 

Gene context of quinolinic acid

 

Analytical, diagnostic and therapeutic context of quinolinic acid

References

  1. Quantitation of human immunodeficiency virus, immune activation factors, and quinolinic acid in AIDS brains. Achim, C.L., Heyes, M.P., Wiley, C.A. J. Clin. Invest. (1993) [Pubmed]
  2. A murine model of the eosinophilia-myalgia syndrome induced by 1,1'-ethylidenebis (L-tryptophan). Silver, R.M., Ludwicka, A., Hampton, M., Ohba, T., Bingel, S.A., Smith, T., Harley, R.A., Maize, J., Heyes, M.P. J. Clin. Invest. (1994) [Pubmed]
  3. The relationship between plasma and brain quinolinic acid levels and the severity of hepatic encephalopathy. Basile, A.S., Saito, K., al-Mardini, H., Record, C.O., Hughes, R.D., Harrison, P., Williams, R., Li, Y., Heyes, M.P. Gastroenterology (1995) [Pubmed]
  4. Replication of the neurochemical characteristics of Huntington's disease by quinolinic acid. Beal, M.F., Kowall, N.W., Ellison, D.W., Mazurek, M.F., Swartz, K.J., Martin, J.B. Nature (1986) [Pubmed]
  5. Quinolinic acid in cerebrospinal fluid and serum in HIV-1 infection: relationship to clinical and neurological status. Heyes, M.P., Brew, B.J., Martin, A., Price, R.W., Salazar, A.M., Sidtis, J.J., Yergey, J.A., Mouradian, M.M., Sadler, A.E., Keilp, J. Ann. Neurol. (1991) [Pubmed]
  6. Cytopathologic and neurochemical correlates of progression to motor/cognitive impairment in SIV-infected rhesus monkeys. Rausch, D.M., Heyes, M.P., Murray, E.A., Lendvay, J., Sharer, L.R., Ward, J.M., Rehm, S., Nohr, D., Weihe, E., Eiden, L.E. J. Neuropathol. Exp. Neurol. (1994) [Pubmed]
  7. Cerebrospinal fluid levels of kynurenine pathway metabolites in patients with eating disorders: relation to clinical and biochemical variable. Demitrack, M.A., Heyes, M.P., Altemus, M., Pigott, T.A., Gold, P.W. Biol. Psychiatry (1995) [Pubmed]
  8. Functional and neurochemical cortical cholinergic impairment following neurotoxic lesions of the nucleus basalis magnocellularis in the rat. el-Defrawy, S.R., Coloma, F., Jhamandas, K., Boegman, R.J., Beninger, R.J., Wirsching, B.A. Neurobiol. Aging (1985) [Pubmed]
  9. Protective effect of encapsulated cells producing neurotrophic factor CNTF in a monkey model of Huntington's disease. Emerich, D.F., Winn, S.R., Hantraye, P.M., Peschanski, M., Chen, E.Y., Chu, Y., McDermott, P., Baetge, E.E., Kordower, J.H. Nature (1997) [Pubmed]
  10. No evidence for preservation of somatostatin-containing neurons after intrastriatal injections of quinolinic acid. Davies, S.W., Roberts, P.J. Nature (1987) [Pubmed]
  11. Neuropharmacology of quinolinic and kynurenic acids. Stone, T.W. Pharmacol. Rev. (1993) [Pubmed]
  12. Study of receptor-mediated neurotoxins released by HIV-1-infected mononuclear phagocytes found in human brain. Giulian, D., Yu, J., Li, X., Tom, D., Li, J., Wendt, E., Lin, S.N., Schwarcz, R., Noonan, C. J. Neurosci. (1996) [Pubmed]
  13. Evaluation of [123I]IBZM pinhole SPECT for the detection of striatal dopamine D2 receptor availability in rats. Scherfler, C., Scholz, S.W., Donnemiller, E., Decristoforo, C., Oberladstätter, M., Stefanova, N., Diederen, E., Virgolini, I., Poewe, W., Wenning, G.K. Neuroimage (2005) [Pubmed]
  14. Short-term lithium treatment promotes neuronal survival and proliferation in rat striatum infused with quinolinic acid, an excitotoxic model of Huntington's disease. Senatorov, V.V., Ren, M., Kanai, H., Wei, H., Chuang, D.M. Mol. Psychiatry (2004) [Pubmed]
  15. Neopterin and quinolinic acid are surrogate measures of disease activity in the juvenile idiopathic inflammatory myopathies. Rider, L.G., Schiffenbauer, A.S., Zito, M., Lim, K.L., Ahmed, A., Zemel, L.S., Rennebohm, R.M., Passo, M.H., Summers, R.M., Hicks, J.E., Lachenbruch, P.A., Heyes, M.P., Miller, F.W. Clin. Chem. (2002) [Pubmed]
  16. Kynurenine pathway enzymes in brain: responses to ischemic brain injury versus systemic immune activation. Saito, K., Nowak, T.S., Suyama, K., Quearry, B.J., Saito, M., Crowley, J.S., Markey, S.P., Heyes, M.P. J. Neurochem. (1993) [Pubmed]
  17. Hunting for excitement: NMDA receptors in Huntington's disease. Ellerby, L.M. Neuron (2002) [Pubmed]
  18. Abnormalities of somatosensory evoked potentials in the quinolinic acid model of Huntington's disease: evidence that basal ganglia modulate sensory cortical input. Schwarz, M., Block, F., Töpper, R., Sontag, K.H., Noth, J. Ann. Neurol. (1992) [Pubmed]
  19. Experiments in marine biochemistry. Homarine metabolism in Penaeus duorarum. Hall, E.R., Gurin, S. J. Biol. Chem. (1975) [Pubmed]
  20. Elevated cerebrospinal fluid quinolinic acid levels are associated with region-specific cerebral volume loss in HIV infection. Heyes, M.P., Ellis, R.J., Ryan, L., Childers, M.E., Grant, I., Wolfson, T., Archibald, S., Jernigan, T.L. Brain (2001) [Pubmed]
  21. Chronic exposure of human neurons to quinolinic acid results in neuronal changes consistent with AIDS dementia complex. Kerr, S.J., Armati, P.J., Guillemin, G.J., Brew, B.J. AIDS (1998) [Pubmed]
  22. Inhibition of indoleamine 2,3-dioxygenase (IDO) enhances elimination of virus-infected macrophages in an animal model of HIV-1 encephalitis. Potula, R., Poluektova, L., Knipe, B., Chrastil, J., Heilman, D., Dou, H., Takikawa, O., Munn, D.H., Gendelman, H.E., Persidsky, Y. Blood (2005) [Pubmed]
  23. Autoradiographic localization of sigma receptor binding sites in guinea pig and rat central nervous system with (+)3H-3-(3-hydroxyphenyl)-N-(1-propyl)piperidine. Gundlach, A.L., Largent, B.L., Snyder, S.H. J. Neurosci. (1986) [Pubmed]
  24. Sources of the neurotoxin quinolinic acid in the brain of HIV-1-infected patients and retrovirus-infected macaques. Heyes, M.P., Saito, K., Lackner, A., Wiley, C.A., Achim, C.L., Markey, S.P. FASEB J. (1998) [Pubmed]
  25. G(olf) and Gs in rat basal ganglia: possible involvement of G(olf) in the coupling of dopamine D1 receptor with adenylyl cyclase. Hervé, D., Lévi-Strauss, M., Marey-Semper, I., Verney, C., Tassin, J.P., Glowinski, J., Girault, J.A. J. Neurosci. (1993) [Pubmed]
  26. Biochemical and phenotypic abnormalities in kynurenine aminotransferase II-deficient mice. Yu, P., Di Prospero, N.A., Sapko, M.T., Cai, T., Chen, A., Melendez-Ferro, M., Du, F., Whetsell, W.O., Guidetti, P., Schwarcz, R., Tagle, D.A. Mol. Cell. Biol. (2004) [Pubmed]
  27. Poliovirus induces indoleamine-2,3-dioxygenase and quinolinic acid synthesis in macaque brain. Heyes, M.P., Saito, K., Jacobowitz, D., Markey, S.P., Takikawa, O., Vickers, J.H. FASEB J. (1992) [Pubmed]
  28. Increased ratio of quinolinic acid to kynurenic acid in cerebrospinal fluid of D retrovirus-infected rhesus macaques: relationship to clinical and viral status. Heyes, M.P., Mefford, I.N., Quearry, B.J., Dedhia, M., Lackner, A. Ann. Neurol. (1990) [Pubmed]
  29. 3-Hydroxyanthranilic acid oxygenase-containing astrocytic processes surround glutamate-containing axon terminals in the rat striatum. Roberts, R.C., McCarthy, K.E., Du, F., Ottersen, O.P., Okuno, E., Schwarcz, R. J. Neurosci. (1995) [Pubmed]
  30. Modulation of dopamine efflux in the striatum following cholinergic stimulation of the substantia nigra in intact and pedunculopontine tegmental nucleus-lesioned rats. Blaha, C.D., Winn, P. J. Neurosci. (1993) [Pubmed]
  31. Susceptibility of striatal neurons to excitotoxic injury correlates with basal levels of Bcl-2 and the induction of P53 and c-Myc immunoreactivity. Liang, Z.Q., Wang, X.X., Wang, Y., Chuang, D.M., DiFiglia, M., Chase, T.N., Qin, Z.H. Neurobiol. Dis. (2005) [Pubmed]
  32. Quinolinic acid upregulates chemokine production and chemokine receptor expression in astrocytes. Guillemin, G.J., Croitoru-Lamoury, J., Dormont, D., Armati, P.J., Brew, B.J. Glia (2003) [Pubmed]
  33. Neuroprotection by scatter factor/hepatocyte growth factor and FGF-1 in cerebellar granule neurons is phosphatidylinositol 3-kinase/akt-dependent and MAPK/CREB-independent. Hossain, M.A., Russell, J.C., Gomez, R., Laterra, J., Gomes, R. J. Neurochem. (2002) [Pubmed]
  34. The endogenous agonist quinolinic acid and the non endogenous homoquinolinic acid discriminate between NMDAR2 receptor subunits. de Carvalho, L.P., Bochet, P., Rossier, J. Neurochem. Int. (1996) [Pubmed]
  35. Quinolinic acid phosphoribosyltransferase: preferential glial localization in the rat brain visualized by immunocytochemistry. Köhler, C., Okuno, E., Flood, P.R., Schwarcz, R. Proc. Natl. Acad. Sci. U.S.A. (1987) [Pubmed]
  36. Protection of the neostriatum against excitotoxic damage by neurotrophin-producing, genetically modified neural stem cells. Martínez-Serrano, A., Björklund, A. J. Neurosci. (1996) [Pubmed]
  37. Cerebrospinal fluid levels of quinolinic acid in Huntington's disease and schizophrenia. Schwarcz, R., Tamminga, C.A., Kurlan, R., Shoulson, I. Ann. Neurol. (1988) [Pubmed]
  38. CSF quinolinic acid levels are determined by local HIV infection: cross-sectional analysis and modelling of dynamics following antiretroviral therapy. Valle, M., Price, R.W., Nilsson, A., Heyes, M., Verotta, D. Brain (2004) [Pubmed]
 
WikiGenes - Universities