The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Evidence for the involvement of N-methylthiourea, a ring cleavage metabolite, in the hepatotoxicity of methimazole in glutathione-depleted mice: structure-toxicity and metabolic studies.

In mice depleted of GSH by treatment with buthionine sulfoximine (BSO), methimazole (2-mercapto-1-methylimidazole, MMI) causes liver injury characterized by centrilobular necrosis of hepatocytes and an increase in serum alanine transaminase (SALT) activity. MMI requires metabolic activation by both P450 monooxygenase and flavin-containing monooxygenase ( FMO) before it produces the hepatotoxicity. MMI and its analogues were examined for the ability to increase SALT activity in GSH-depleted mice. Saturation of the C-4,5 double bond in MMI resulted in a complete loss of hepatotoxicity. Similarly, ring fusion of a benzene nucleus to the C-4,5 double bond, forming 2-mercapto-1-methylbenzimidazole, abolished the toxic potency. As for MMI, 2-mercapto-1,4,5-trimethylimidazole, and 2-mercapto-1-methyl-4, 5-di-n-propylimidazole, the toxic potency decreased with the increasing bulk of the 4- and 5-alkyl substituents. Furthermore, methylation of the thiol group of MMI totally reduced its toxicity. These structural requirements and the known toxicity of thiono-sulfur compounds led us to the hypothesis that MMI would undergo epoxidation of the C-4,5 double bond by P450 enzymes and, after being hydrolyzed, the resulting epoxide would be then decomposed to form N-methylthiourea, a proximate toxicant. Before N-methylthiourea would produce toxicity, it would be further biotransformed to its S-oxidized metabolites mainly by FMO. Evidence for this hypothesis was provided by the facts that N-methylthiourea and glyoxal as the accompanying fragment were identified as urinary metabolites in mice treated with MMI and that N-methylthiourea caused a marked increase in SALT activity when administered to mice in combination with BSO.[1]

References

 
WikiGenes - Universities