Angiotensin II induces transactivation of two different populations of the platelet-derived growth factor beta receptor. Key role for the p66 adaptor protein Shc.
Several signal transduction events induced by angiotensin II (AngII) binding to the angiotensin II type 1 receptor resemble those evoked by platelet-derived growth factor (PDGF) binding to the PDGF-beta receptor (PDGFbeta-R). We report here, in agreement with previous data, that AngII and PDGF-B-chain homodimer (PDGF-BB) stimulate tyrosine phosphorylation of the PDGFbeta-R. Both AngII and PDGF-BB stimulated the phosphorylation of PDGFbeta-R via the binding of tyrosine-phosphorylated Shc to PDGFbeta-R. Both PDGF-BB- and AngII-induced phosphorylation of the Shc.PDGFbeta-R complex was inhibited by antioxidants such as N-acetylcysteine and Tiron, but not by calcium chelation. However, transactivation of PDGFbeta-R by AngII (measured by PDGFbeta-R tyrosine phosphorylation) differed significantly from PDGF-BB. Evidence to support different mechanisms of PDGFbeta-R phosphorylation includes differences in the time course of PDGFbeta-R phosphorylation, differing effects of inhibitors of the endogenous PDGFbeta-R tyrosine kinase and Src family tyrosine kinases, differing results when the PDGFbeta-R was directly immunoprecipitated (PDGFbeta-R-antibody) versus coimmunoprecipitated (Shc-antibody), and cell fractionation studies that suggested that the Shc.PDGFbeta-R complexes phosphorylated by AngII and PDGF-BB were located in separate subcellular compartments. These studies are the first to suggest that transactivation of tyrosine kinase receptors by G protein-coupled receptors involves a unique pathway that regulates a population of tyrosine kinase receptors different from the endogenous tyrosine kinase ligand.[1]References
- Angiotensin II induces transactivation of two different populations of the platelet-derived growth factor beta receptor. Key role for the p66 adaptor protein Shc. Heeneman, S., Haendeler, J., Saito, Y., Ishida, M., Berk, B.C. J. Biol. Chem. (2000) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg