The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Blockade of pilocarpine-induced cerebellar phosphoinositide hydrolysis with metabotropic glutamate antagonists: evidence for an indirect control of granule cell glutamate release by muscarinic agonists.

The ability in vivo of the muscarinic agonist, pilocarpine, to increase phosphoinositol (PI) hydrolysis in lithium pretreated rats was investigated by measuring the accumulation of [(3)H]inositol phosphates (IP). As expected, 20 mg/kg s.c. pilocarpine, a muscarinic agonist, increased PI hydrolysis in the striatum, frontal cortex and hippocampus. Somewhat surprisingly, an increase in IP was also found in the cerebellar homogenates. In all four tissues the pilocarpine-induced effect could be completely inhibited by pretreatment with the muscarinic antagonist scopolamine (1.2 mg/kg i. p.). It was also found that the cerebellar but not the hippocampal pilocarpine-induced rise in PI hydrolysis could be blocked by the metabotropic glutamate (mGlu) receptor antagonist, LY341495 (100 nmol, i.c.v.). The same dose of LY341495 was found to also block both the cerebellar and hippocampal increase in IP formed by stimulation with the group I mGlu receptor agonist 3, 5-dihydroxyphenylglycine (1 micromol, i.c.v.). Given this data and the current information on the distribution of muscarinic and mGlu receptors in the cerebellum, it is suggested that these results may be a reflection of pilocarpine acting at M(2) receptors to indirectly increase glutamate release from parallel fibers by inhibition of gamma-aminobutyric acid-releasing Golgi cells.[1]


WikiGenes - Universities