The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

Grm1  -  glutamate receptor, metabotropic 1

Rattus norvegicus

Synonyms: Gprc1a, Metabotropic glutamate receptor 1, Mglur1, mGluR1
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Grm1

 

Psychiatry related information on Grm1

  • This hypothesis was supported by the evidence that mGlu-receptor stimulated PI hydrolysis was amplified in hippocampal slices from rats subjected to a passive avoidance learning paradigm, and that this amplification was greater in slices from corticosterone-nursed rats of both sexes [6].
  • These results demonstrate that treatment with agonists to group II and III mGluRs following SCI affects mechanical responses, exploratory behavior, and mGluR2/3 expression without affecting the amount of tissue spared, suggesting that the level of mGluR expression after SCI may modulate nociceptive responses [7].
  • Therefore, the central application of group I mGluR antagonists or groups II and III mGluR agonists might be of therapeutic value in treating pain disorder [8].
  • The finding that the NMDA receptor-PAF-MAP kinase signaling pathway is attenuated by mGluR activation highlights the exquisite interplay between glutamate receptors in the decision making process between neuronal survival and death [9].
  • Furthermore, the critical period during which the high sensitivity to agonist-induced desensitization of mGluR developed coincided with the period when phorbol ester-activated protein kinase C acquired the ability to suppress mGluR activity [10].
 

High impact information on Grm1

  • This transmission involves a G protein-coupled metabotropic glutamate receptor (mGluR) [11].
  • Immunocytochemical and immunoelectron microscopic studies indicate that restricted localization of a specific mGluR subtype, mGluR6, at the postsynaptic site of the rat rod bipolar cell [11].
  • Here we show that agonists of the metabotropic glutamate receptor (mGluR) activate dendritic terminals of interneurons in the absence of action potentials, thereby inhibiting the postsynaptic relay neuron [12].
  • In ventral midbrain dopamine neurons, activation of metabotropic glutamate receptors (mGluR1) mobilized calcium from caffeine/ryanodine-sensitive stores and increased an apamin-sensitive potassium conductance [13].
  • The rapid rise and brief duration of synaptically released glutamate in the extracellular space can therefore mediate a rapid excitation through activation of ionotropic receptors, followed by inhibition through the mGluR1 receptor [13].
 

Chemical compound and disease context of Grm1

 

Biological context of Grm1

 

Anatomical context of Grm1

 

Associations of Grm1 with chemical compounds

  • Site-directed mutagenesis revealed that valine at position 757 in transmembrane V of mGluR1a is crucial for the activity of multiple classes of allosteric mGluR1 potentiators [26].
  • In addition, the facilitation of nociceptive responses induced by (1S,3S)-ACPD or (RS)-DHPG was reduced by prior i.t. administration of the mGluR antagonists, (+)-MCPG or (S)-4C3HPG, respectively, as well as by the N-Methyl-D-aspartate (NMDA) receptor antagonist, D(-)-2-amino-5-phosphonopentanoic acid (D-AP5) [27].
  • Bath application of the non-selective mGluR agonist (1 S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (1 S,3R-ACPD) or the group-I mGluR agonist 3,5-dihydroxyphenylglycine (DHPG) depolarized all cholinergic neurones tested by activation of an inward current at -60 mV [28].
  • These results indicate that although mGluRs may play a minor role in formalin-induced nociception, mGluR agonist-related facilitation of formalin scores may reflect an interaction with the NMDA receptor [27].
  • Under control conditions, blocking G protein activation using intracellular GDPbetaS with or without N-(2, 6-dimethylphenylcarbamoylmethyl) triethylammonium chloride (QX-314) prevented mGluR-mediated activation of the TRP-like conductance [29].
 

Physical interactions of Grm1

  • [(3)H]Quisqualic acid binding to mGluR1 required the presence of calcium (or magnesium) ions but not sodium or chloride ions while [(3)H]DCG-IV binding to mGluR3 was dependent upon both cations and anions [30].
  • We have determined the crystal structure of the Homer EVH1 domain complexed with a peptide from mGluR (TPPSPF) [31].
 

Regulatory relationships of Grm1

 

Other interactions of Grm1

  • Status epilepticus did not alter expression of mGluR1, mGluR3, or mGluR5 mRNAs [1].
  • Double-labeling with probes for mGluR1 and mGluR7 revealed that individual mitral/tufted neurons in the olfactory bulb expressed both mRNAs [36].
  • In recombinant systems, BINA produced a robust and selective potentiation of the response of mGluR2 to glutamate with no effect on the glutamate response of other mGluR subtypes [37].
  • Group I metabotropic glutamate receptors (mGluR1 and 5) couple to intracellular calcium pools by a family of proteins, termed Homer, that cross-link the receptor to inositol trisphosphate receptors. mGluRs also couple to membrane ion channels via G-proteins [38].
  • High expression of mGluR1 mRNA mainly occurred in midline nuclei such as the centromedial/centrolateral (CM/CL) nuclei, parafascicular and submedius nuclei, and in the ventroposteromedial (VPM) and posterior (Po) nuclei [39].
 

Analytical, diagnostic and therapeutic context of Grm1

References

  1. Status epilepticus-induced alterations in metabotropic glutamate receptor expression in young and adult rats. Aronica, E.M., Gorter, J.A., Paupard, M.C., Grooms, S.Y., Bennett, M.V., Zukin, R.S. J. Neurosci. (1997) [Pubmed]
  2. Changes in metabotropic glutamate receptor mRNA levels following global ischemia: increase of a putative presynaptic subtype (mGluR4) in highly vulnerable rat brain areas. Iversen, L., Mulvihill, E., Haldeman, B., Diemer, N.H., Kaiser, F., Sheardown, M., Kristensen, P. J. Neurochem. (1994) [Pubmed]
  3. Group I metabotropic glutamate receptor activation produces a direct excitation of identified septohippocampal cholinergic neurons. Wu, M., Hajszan, T., Xu, C., Leranth, C., Alreja, M. J. Neurophysiol. (2004) [Pubmed]
  4. Expression of the mRNA of seven metabotropic glutamate receptors (mGluR1 to 7) in the rat retina. An in situ hybridization study on tissue sections and isolated cells. Hartveit, E., Brandstätter, J.H., Enz, R., Wässle, H. Eur. J. Neurosci. (1995) [Pubmed]
  5. Metabotropic glutamate antagonist, MCPG, treatment of traumatic brain injury in rats. Gong, Q.Z., Delahunty, T.M., Hamm, R.J., Lyeth, B.G. Brain Res. (1995) [Pubmed]
  6. Reduced activity of hippocampal group-I metabotropic glutamate receptors in learning-prone rats. Cinque, C., Zuena, A.R., Casolini, P., Ngomba, R.T., Melchiorri, D., Maccari, S., Nicoletti, F., DiGiorgi Gerevini, n.u.l.l., Catalani, A. Neuroscience (2003) [Pubmed]
  7. Role of group II and group III metabotropic glutamate receptors in spinal cord injury. Mills, C.D., Johnson, K.M., Hulsebosch, C.E. Exp. Neurol. (2002) [Pubmed]
  8. Central metabotropic glutamate receptors differentially participate in interleukin-1beta-induced mechanical allodynia in the orofacial area of conscious rats. Jung, C.Y., Choi, H.S., Ju, J.S., Park, H.S., Kwon, T.G., Bae, Y.C., Ahn, D.K. The journal of pain : official journal of the American Pain Society. (2006) [Pubmed]
  9. Glutamate receptor signaling interplay modulates stress-sensitive mitogen-activated protein kinases and neuronal cell death. Mukherjee, P.K., DeCoster, M.A., Campbell, F.Z., Davis, R.J., Bazan, N.G. J. Biol. Chem. (1999) [Pubmed]
  10. Mechanisms underlying developmental changes in the expression of metabotropic glutamate receptors in cultured cerebellar granule cells: homologous desensitization and interactive effects involving N-methyl-D-aspartate receptors. Aronica, E., Dell'Albani, P., Condorelli, D.F., Nicoletti, F., Hack, N., Balázs, R. Mol. Pharmacol. (1993) [Pubmed]
  11. Developmentally regulated postsynaptic localization of a metabotropic glutamate receptor in rat rod bipolar cells. Nomura, A., Shigemoto, R., Nakamura, Y., Okamoto, N., Mizuno, N., Nakanishi, S. Cell (1994) [Pubmed]
  12. Glutamate locally activates dendritic outputs of thalamic interneurons. Cox, C.L., Zhou, Q., Sherman, S.M. Nature (1998) [Pubmed]
  13. Glutamate mediates an inhibitory postsynaptic potential in dopamine neurons. Fiorillo, C.D., Williams, J.T. Nature (1998) [Pubmed]
  14. Growth factor upregulation of a phosphoinositide-coupled metabotropic glutamate receptor in cortical astrocytes. Miller, S., Romano, C., Cotman, C.W. J. Neurosci. (1995) [Pubmed]
  15. Basal levels of adenosine modulate mGluR5 on rat hippocampal astrocytes. Cormier, R.J., Mennerick, S., Melbostad, H., Zorumski, C.F. Glia (2001) [Pubmed]
  16. Activation of the metabotropic glutamate receptor is neuroprotective during nitric oxide toxicity in primary hippocampal neurons of rats. Maiese, K., Greenberg, R., Boccone, L., Swiriduk, M. Neurosci. Lett. (1995) [Pubmed]
  17. Metabotropic glutamate receptor activation enhances the activities of two types of Ca2+-activated k+ channels in rat hippocampal astrocytes. Gebremedhin, D., Yamaura, K., Zhang, C., Bylund, J., Koehler, R.C., Harder, D.R. J. Neurosci. (2003) [Pubmed]
  18. Chronic but not acute treatment with a metabotropic glutamate 5 receptor antagonist reverses the akinetic deficits in a rat model of parkinsonism. Breysse, N., Baunez, C., Spooren, W., Gasparini, F., Amalric, M. J. Neurosci. (2002) [Pubmed]
  19. Multiple presynaptic metabotropic glutamate receptors modulate excitatory and inhibitory synaptic transmission in hippocampal area CA1. Gereau, R.W., Conn, P.J. J. Neurosci. (1995) [Pubmed]
  20. Signal transduction, pharmacological properties, and expression patterns of two rat metabotropic glutamate receptors, mGluR3 and mGluR4. Tanabe, Y., Nomura, A., Masu, M., Shigemoto, R., Mizuno, N., Nakanishi, S. J. Neurosci. (1993) [Pubmed]
  21. 4-Methylhomoibotenic acid activates a novel metabotropic glutamate receptor coupled to phosphoinositide hydrolysis. Chung, D.S., Traynelis, S.F., Murphy, T.J., Conn, P.J. J. Pharmacol. Exp. Ther. (1997) [Pubmed]
  22. Roles of specific metabotropic glutamate receptor subtypes in regulation of hippocampal CA1 pyramidal cell excitability. Gereau, R.W., Conn, P.J. J. Neurophysiol. (1995) [Pubmed]
  23. Axotomy of the sciatic nerve differentially affects expression of metabotropic glutamate receptor mRNA in adult rat motoneurons. Anneser, J.M., Berthele, A., Borasio, G.D., Castro-Lopes, J.M., Zieglgänsberger, W., Tölle, T.R. Brain Res. (2000) [Pubmed]
  24. Metabotropic glutamate receptor mRNA expression in the basal ganglia of the rat. Testa, C.M., Standaert, D.G., Young, A.B., Penney, J.B. J. Neurosci. (1994) [Pubmed]
  25. Slow feedback inhibition in the CA3 area of the rat hippocampus by synergistic synaptic activation of mGluR1 and mGluR5. Mori, M., Gerber, U. J. Physiol. (Lond.) (2002) [Pubmed]
  26. A novel class of positive allosteric modulators of metabotropic glutamate receptor subtype 1 interact with a site distinct from that of negative allosteric modulators. Hemstapat, K., de Paulis, T., Chen, Y., Brady, A.E., Grover, V.K., Alagille, D., Tamagnan, G.D., Conn, P.J. Mol. Pharmacol. (2006) [Pubmed]
  27. The contribution of metabotropic glutamate receptors (mGluRs) to formalin-induced nociception. Fisher, K., Coderre, T.J. Pain (1996) [Pubmed]
  28. Functional and molecular characterization of metabotropic glutamate receptors expressed in rat striatal cholinergic interneurones. Bell, M.I., Richardson, P.J., Lee, K. J. Neurochem. (2002) [Pubmed]
  29. Group I metabotropic glutamate receptors activate a calcium-sensitive transient receptor potential-like conductance in rat hippocampus. Gee, C.E., Benquet, P., Gerber, U. J. Physiol. (Lond.) (2003) [Pubmed]
  30. Ion dependence of ligand binding to metabotropic glutamate receptors. Kuang, D., Hampson, D.R. Biochem. Biophys. Res. Commun. (2006) [Pubmed]
  31. Structure of the Homer EVH1 domain-peptide complex reveals a new twist in polyproline recognition. Beneken, J., Tu, J.C., Xiao, B., Nuriya, M., Yuan, J.P., Worley, P.F., Leahy, D.J. Neuron (2000) [Pubmed]
  32. Surface clustering of metabotropic glutamate receptor 1 induced by long Homer proteins. Kammermeier, P.J. BMC neuroscience [electronic resource]. (2006) [Pubmed]
  33. Role of protein phosphatase 2A in mGluR5-regulated MEK/ERK phosphorylation in neurons. Mao, L., Yang, L., Arora, A., Choe, E.S., Zhang, G., Liu, Z., Fibuch, E.E., Wang, J.Q. J. Biol. Chem. (2005) [Pubmed]
  34. Metabotropic glutamate receptors and dopamine receptors cooperate to enhance extracellular signal-regulated kinase phosphorylation in striatal neurons. Voulalas, P.J., Holtzclaw, L., Wolstenholme, J., Russell, J.T., Hyman, S.E. J. Neurosci. (2005) [Pubmed]
  35. Group I metabotropic glutamate receptor NMDA receptor coupling and signaling cascade mediate spinal dorsal horn NMDA receptor 2B tyrosine phosphorylation associated with inflammatory hyperalgesia. Guo, W., Wei, F., Zou, S., Robbins, M.T., Sugiyo, S., Ikeda, T., Tu, J.C., Worley, P.F., Dubner, R., Ren, K. J. Neurosci. (2004) [Pubmed]
  36. Cloning and expression of a new member of the L-2-amino-4-phosphonobutyric acid-sensitive class of metabotropic glutamate receptors. Saugstad, J.A., Kinzie, J.M., Mulvihill, E.R., Segerson, T.P., Westbrook, G.L. Mol. Pharmacol. (1994) [Pubmed]
  37. Biphenyl-indanone A, a positive allosteric modulator of the metabotropic glutamate receptor subtype 2, has antipsychotic- and anxiolytic-like effects in mice. Galici, R., Jones, C.K., Hemstapat, K., Nong, Y., Echemendia, N.G., Williams, L.C., de Paulis, T., Conn, P.J. J. Pharmacol. Exp. Ther. (2006) [Pubmed]
  38. Homer proteins regulate coupling of group I metabotropic glutamate receptors to N-type calcium and M-type potassium channels. Kammermeier, P.J., Xiao, B., Tu, J.C., Worley, P.F., Ikeda, S.R. J. Neurosci. (2000) [Pubmed]
  39. Differential distribution of metabotropic glutamate receptor subtype mRNAs in the thalamus of the rat. Lourenço Neto, F., Schadrack, J., Berthele, A., Zieglgänsberger, W., Tölle, T.R., Castro-Lopes, J.M. Brain Res. (2000) [Pubmed]
  40. Impoverished rearing environment alters metabotropic glutamate receptor expression and function in the prefrontal cortex. Melendez, R.I., Gregory, M.L., Bardo, M.T., Kalivas, P.W. Neuropsychopharmacology (2004) [Pubmed]
  41. Metabotropic glutamate receptor mRNA expression in rat spinal cord. Valerio, A., Paterlini, M., Boifava, M., Memo, M., Spano, P. Neuroreport (1997) [Pubmed]
  42. Differential plasma membrane distribution of metabotropic glutamate receptors mGluR1 alpha, mGluR2 and mGluR5, relative to neurotransmitter release sites. Luján, R., Roberts, J.D., Shigemoto, R., Ohishi, H., Somogyi, P. J. Chem. Neuroanat. (1997) [Pubmed]
 
WikiGenes - Universities