The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

The inositol hexakisphosphate kinase family. Catalytic flexibility and function in yeast vacuole biogenesis.

Saiardi et al. (Saiardi, A., Erdjument-Bromage, H., Snowman, A., Tempst, P., and Snyder, S. H. (1999) Curr. Biol. 9, 1323-1326) previously described the cloning of a kinase from yeast and two kinases from mammals (types 1 and 2), which phosphorylate inositol hexakisphosphate (InsP(6)) to diphosphoinositol pentakisphosphate, a "high energy" candidate regulator of cellular trafficking. We have now studied the significance of InsP(6) kinase activity in Saccharomyces cerevisiae by disrupting the kinase gene. These ip6kDelta cells grew more slowly, their levels of diphosphoinositol polyphosphates were 60-80% lower than wild-type cells, and the cells contained abnormally small and fragmented vacuoles. Novel activities of the mammalian and yeast InsP(6) kinases were identified; inositol pentakisphosphate (InsP(5)) was phosphorylated to diphosphoinositol tetrakisphosphate (PP-InsP(4)), which was further metabolized to a novel compound, tentatively identified as bis-diphosphoinositol trisphosphate. The latter is a new substrate for human diphosphoinositol polyphosphate phosphohydrolase. Kinetic parameters for the mammalian type 1 kinase indicate that InsP(5) (K(m) = 1.2 micrometer) and InsP(6) (K(m) = 6.7 micrometer) compete for phosphorylation in vivo. This is the first time a PP-InsP(4) synthase has been identified. The mammalian type 2 kinase and the yeast kinase are more specialized for the phosphorylation of InsP(6). Synthesis of the diphosphorylated inositol phosphates is thus revealed to be more complex and interdependent than previously envisaged.[1]

References

  1. The inositol hexakisphosphate kinase family. Catalytic flexibility and function in yeast vacuole biogenesis. Saiardi, A., Caffrey, J.J., Snyder, S.H., Shears, S.B. J. Biol. Chem. (2000) [Pubmed]
 
WikiGenes - Universities