The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Zinc transporters that regulate vacuolar zinc storage in Saccharomyces cerevisiae.

All cells regulate their intracellular zinc levels. In yeast, zinc uptake is mediated by Zrt1p and Zrt2p, which belong to the ZIP family of metal transporters. Under zinc limitation, ZRT1 and ZRT2 transcription is induced by the Zap1p transcriptional activator. We describe here a new component of zinc homeostasis, vacuolar zinc storage, that is also regulated by Zap1p. Zinc-replete cells accumulate zinc in the vacuole via the Zrc1p and Cot1p transporters. Our results indicate that another zinc transporter, Zrt3p, mobilizes this stored zinc in zinc-limited cells. ZRT3 is a Zap1p-regulated gene whose transcription increases in low zinc. Zrt3p is also a member of the ZIP family and it localizes to the vacuolar membrane. The effects of ZRT3 mutation and overexpression on cell growth, cellular zinc accumulation and intracellular labile zinc pools are all consistent with its proposed role. Furthermore, we demonstrate that zrt3 mutants inefficiently mobilize stored zinc to offset deficiency. Thus, our studies define a system of zinc influx and efflux transporters in the vacuole that play important roles in zinc homeostasis.[1]


  1. Zinc transporters that regulate vacuolar zinc storage in Saccharomyces cerevisiae. MacDiarmid, C.W., Gaither, L.A., Eide, D. EMBO J. (2000) [Pubmed]
WikiGenes - Universities