The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Humanized xenobiotic response in mice expressing nuclear receptor SXR.

The cytochrome CYP3A gene products, expressed in mammalian liver, are essential for the metabolism of lipophilic substrates, including endogenous steroid hormones and prescription drugs. CYP3A enzymes are extremely versatile and are inducible by many of their natural and xenobiotic substrates. Consequently, they form the molecular basis for many clinical drug-drug interactions. The induction of CYP3A enzymes is species-specific, and we have postulated that it involves one or more cellular factors, or receptor-like xeno-sensors. Here we identify one such factor unequivocally as the nuclear receptor pregnenolone X receptor ( PXR) and its human homologue, steroid and xenobiotic receptor (SXR). We show that targeted disruption of the mouse PXR gene abolishes induction of CYP3A by prototypic inducers such as dexamethasone or pregnenolone-16alpha-carbonitrile. In transgenic mice, an activated form of SXR causes constitutive upregulation of CYP3A gene expression and enhanced protection against toxic xenobiotic compounds. Furthermore, we show that the species origin of the receptor, rather than the promoter structure of CYP3A genes, dictates the species-specific pattern of CYP3A inducibility. Thus, we can generate 'humanized' transgenic mice that are responsive to human-specific inducers such as the antibiotic rifampicin. We conclude that SXR/ PXR genes encode the primary species-specific xeno-sensors that mediate the adaptive hepatic response, and may represent the critical biochemical mechanism of human xenoprotection.[1]

References

  1. Humanized xenobiotic response in mice expressing nuclear receptor SXR. Xie, W., Barwick, J.L., Downes, M., Blumberg, B., Simon, C.M., Nelson, M.C., Neuschwander-Tetri, B.A., Brunt, E.M., Guzelian, P.S., Evans, R.M. Nature (2000) [Pubmed]
 
WikiGenes - Universities