The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Synaptic plasticity in the human dentate gyrus.

Activity-dependent plasticity is a fundamental feature of most CNS synapses and is thought to be a synaptic correlate of memory in rodents. In humans, NMDA receptors have been linked to verbal memory processes, but it is unclear whether NMDA receptor-dependent synaptic plasticity can be recruited for information storage in the human CNS. Here we have for the first time analyzed different forms of synaptic plasticity in human hippocampus. In human subjects who show a morphologically intact hippocampus that is not the primary seizure focus, NMDA receptor-dependent long-term potentiation (LTP) and forskolin-induced long-lasting potentiation are readily induced at the perforant path-dentate gyrus synapse. In this group, long-term potentiation could be partially depotentiated by low-frequency stimulation. Because patients with a hippocampal seizure focus showed a marked reduction in verbal memory performance in previous studies, we asked whether synaptic plasticity is similarly affected by the presence of a hippocampal primary seizure focus. We found that the amount of potentiation induced by high-frequency stimulation or perfusion of forskolin is dramatically reduced in this patient group. In addition, low-frequency stimulation is not effective in inducing synaptic depression. In summary, we show that activity-dependent synaptic plasticity with properties similar to the rodent is available for information storage in the human hippocampus. Because both verbal memory processes and synaptic plasticity are impaired by a hippocampal seizure focus, we suggest that impaired synaptic plasticity may contribute to deficient declarative memory in human temporal lobe epilepsy.[1]

References

  1. Synaptic plasticity in the human dentate gyrus. Beck, H., Goussakov, I.V., Lie, A., Helmstaedter, C., Elger, C.E. J. Neurosci. (2000) [Pubmed]
 
WikiGenes - Universities