The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Mechanisms of agonist-induced down-regulation of the human kappa-opioid receptor: internalization is required for down-regulation.

Previously, we showed that the human kappa-opioid receptor (hkor) stably expressed in Chinese hamster ovary (CHO) cells underwent down-regulation after prolonged U50,488H treatment. In the present study, we determined the mechanisms underlying this process. U50, 488H caused a significant down-regulation of the hkor, although etorphine did not. Neither U50,488H nor etorphine caused down-regulation of the rat kappa-opioid receptor. Thus, similar to internalization, there are agonist and species differences in down-regulation of kappa-opioid receptors. Expression of the dominant negative mutants arrestin-2(319-418) or dynamin I-K44A significantly reduced U50,488H-induced down-regulation of the hkor. Coexpression of GRK2 or GRK2 and arrestin-2 permitted etorphine to induce down-regulation of the hkor, although expression of arrestin-2 or dynamin I alone did not. Expression of the dominant negative mutants rab5A-N133I or rab7-N125I blunted U50,488H-induced down-regulation. Pretreatment with lysosomal enzyme inhibitors [(2S, 3S)trans-epoxysuccinyl-L-leucylamido-3-methylbutane ethyl ester or chloroquine] or proteasome inhibitors (proteasome inhibitor I, MG-132, or lactacystin) decreased the extent of U50,488H-induced down-regulation. A combination of chloroquine and proteasome inhibitor I abolished U50,488H-induced down-regulation. These results indicate that U50,488H-induced down-regulation of the hkor involves GRK-, arrestin-2-, dynamin-, rab5-, and rab7-dependent mechanisms and receptors seem to be trafficked to lysosomes and proteasomes for degradation. Thus, U50,488H-induced internalization and down-regulation of the hkor share initial common mechanisms. To the best of our knowledge, these results represent the first report on the involvement of both rab5 and rab7 in agonist- induced down-regulation of a G protein-coupled receptor. In addition, this study is among the first to show the involvement of proteasomes in agonist-induced down-regulation of a G protein-coupled receptor.[1]


WikiGenes - Universities