Genomic structure and promoter analysis of the rat kir7.1 potassium channel gene (Kcnj13).
In the brain inwardly rectifying potassium channel Kir7.1 subunits are predominantly expressed in the choroid plexus and meninges. To investigate this tissue-specific expression pattern, we characterized the genomic organization and the 5' proximal promoter of the rat Kir7.1 gene (Kcnj13). Starting from the major transcriptional initiation site, three exons in Kcnj13 give rise to the dominant approximately 1.45 kb transcript in brain. Adjacent to the transcriptional start the minimal promoter which, uncommon for ion channels, contains a TATA- and CAAT-box is controlled by AP-1 factors and accounts for high gene expression levels. Luciferase reporter gene responses driven by the first 2.1 kb of the 5' flanking region were similarly high in epithelial FRTL-5 and neuronal N2A cells, suggesting that neuron-specific repressor elements are located remote from the non-selective minimal promoter.[1]References
- Genomic structure and promoter analysis of the rat kir7.1 potassium channel gene (Kcnj13). Döring, F., Karschin, A. FEBS Lett. (2000) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg