The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Induction of P-glycoprotein by rifampin increases intestinal secretion of talinolol in human beings: a new type of drug/drug interaction.

BACKGROUND: P-Glycoprotein is an efflux pump in many epithelial cells with excretory function. It has been demonstrated that rifampin (INN, rifampicin) induces P-glycoprotein, particularly in the gut wall. We therefore hypothesized that rifampin affects pharmacokinetics of the P-glycoprotein substrate talinolol, a beta1-blocker without appreciable metabolic disposition but intense intestinal secretion in human beings. METHODS: Pharmacokinetics of talinolol (a single dose of 30 mg administered intravenously or 100 mg administered orally for 7 days) and duodenal expression of the MDR1 gene product P-glycoprotein as assessed by reverse transcriptase-polymerase chain reaction of the MDR1-messenger ribonucleic acid, by immunohistochemistry and Western blot analysis were analyzed before and after coadministration of rifampin (600 mg per day for 9 days) in 8 male healthy volunteers (age 22 to 26 years). RESULTS: During rifampin treatment, the areas under the curve of intravenous and oral talinolol were significantly lower (21% and 35%; P < .05). Treatment with rifampin resulted in a significantly increased expression of duodenal P-glycoprotein content 4.2-fold (2.9, 6.51) (Western blot) and messenger RNA was increased in six of the eight volunteers. P-Glycoprotein expression in biopsy specimens of gut mucosa correlated significantly with the systemic clearance of intravenous talinolol (rs = 0.74; P < .001). CONCLUSIONS: Rifampin induces P-glycoprotein-mediated excretion of talinolol predominantly in the gut wall. Moreover, clearance of talinolol from the blood into the lumen of the gastrointestinal tract may be predicted by the individual intestinal P-glycoprotein expression. Thus we describe a new type of steady-state drug interaction affecting compounds that are subject to transport rather than metabolism.[1]


  1. Induction of P-glycoprotein by rifampin increases intestinal secretion of talinolol in human beings: a new type of drug/drug interaction. Westphal, K., Weinbrenner, A., Zschiesche, M., Franke, G., Knoke, M., Oertel, R., Fritz, P., von Richter, O., Warzok, R., Hachenberg, T., Kauffmann, H.M., Schrenk, D., Terhaag, B., Kroemer, H.K., Siegmund, W. Clin. Pharmacol. Ther. (2000) [Pubmed]
WikiGenes - Universities