The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Peptide-induced Ca(2+) movements in a tonic insect muscle: effects of proctolin and periviscerokinin-2.

Although most of the characterized insect neuropeptides have been detected by their actions on muscle contractions, not much is known about the mechanisms underlying excitation-contraction coupling. Thus we initiated a pharmacological study on the myotropic action of the peptides periviscerokinin-2 (PVK-2) and proctolin on the hyperneural muscle of the cockroach Periplaneta americana. Both peptides required extracellular Ca(2+) to induce muscle contraction, and a blockage of sarcolemmal Ca(2+) channels by Mn(2+) or La(3+) inhibited myotropic effects. The peptides were able to induce contractions in dependence on the extracellular Ca(2+) concentration in muscles depolarized with high K(+) saline. A reduction of extracellular Na(+), K(+), or Cl(-) did not effect peptide action. Nifedipine, an L-type Ca(2+)-channel blocker, partially blocked the response to both peptides but to a much lesser extent than contractions evoked by elevated K(+). Using calcium imaging with fluo-3, we show that proctolin induces an increase of the intracellular Ca(2+) concentration. In calcium-free saline, no increase of the intracellular Ca(2+) concentration could be detected. The inhibiting effect of ryanodine, thapsigargin, and TMB-8 on peptide-induced contractions suggests that Ca(2+) release from the sarcoplasmic reticulum plays a major role during peptide-induced contractions. Preliminary experiments suggest that the peptides do not employ cyclic nucleotides as second messengers, but may activate protein kinase C. Our results indicate that the peptides induce Ca(2+) influx by an activation or modulation of dihydropyridine-sensitive and voltage-independent sarcolemmal Ca(2+) channels. Ca(2+)-induced Ca(2+) release from intracellular stores, but not inositol trisphosphate-induced Ca(2+) release, seems to account for most of the observed increase in intracellular Ca(2+). Additionally, both peptides were able to potentiate glutamate-induced contractions at threshold concentrations.[1]

References

 
WikiGenes - Universities