The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Apoptosis induced by 1'-acetoxychavicol acetate in Ehrlich ascites tumor cells is associated with modulation of polyamine metabolism and caspase-3 activation.

The efficacy of the antitumor activity of 1'-acetoxychavicol acetate (ACA), reported to be a suppressor of chemically induced carcinogenesis, was evaluated in Ehrlich ascites tumor cells. ACA treatment resulted in changes in morphology and a dose-dependent suppression of cell viability. Apoptosis, characterized by nuclear condensation, membrane blebbing, cell shrinkage and a significant induction of caspase-3-like protease activity at 8 h in a time-course study were observed. Formation of apoptotic bodies was preceded by lowering of intracellular polyamines, particularly putrescine, and both dose- and time-dependent inhibitory and activation effect by ACA on ornithine decarboxylase (ODC) and spermidine/spermine N(1)-acetyltransferase (SSAT), respectively. Administration of exogenous polyamines prevented ACA-induced apoptosis represented by a reduction in the number of apoptotic bodies and also caused reduction in the induced caspase-3-like protease activity at 8 h. These findings suggest that the anticarcinogenic effects of ACA might be partly due to perturbation of the polyamine metabolic pathway and triggering of caspase-3-like activity, which result in apoptosis.[1]

References

  1. Apoptosis induced by 1'-acetoxychavicol acetate in Ehrlich ascites tumor cells is associated with modulation of polyamine metabolism and caspase-3 activation. Moffatt, J., Hashimoto, M., Kojima, A., Kennedy, D.O., Murakami, A., Koshimizu, K., Ohigashi, H., Matsui-Yuasa, I. Carcinogenesis (2000) [Pubmed]
 
WikiGenes - Universities