The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Studies of the chemical selectivity of hapten, reactivity, and skin sensitization potency. 1. Synthesis and studies on the reactivity toward model nucleophiles of the (13)C-labeled skin sensitizers hex-1-ene- and hexane-1,3-sultones.

The potent skin sensitizers hex-1-ene- and hexane-1,3-sultone have been synthesized isotopically labeled with (13)C at reactive sites. The reactivity of 2-[(13)C]- and 3-[(13)C]hex-1-ene-1,3-sultones and of 3-[(13)C]hexane-1,3-sultone toward a series of model nucleophiles for protein amino acid residues, i.e., butylamine, diethylamine, imidazole, propanethiol, and phenol, was followed by (13)C NMR spectroscopy. The reactivity in water of hex-1-ene-1,3-sultone toward model nucleophiles follows the hard and soft acid and base theory with the hard nucleophiles (primary and secondary amine and phenate) mainly reacting at position 3 by S(N) substitution, and the soft nucleophiles (thiolate and imidazole) mainly reacting at position 2 by a Michael addition reaction. Hexane-1,3-sultone reacts with model nucleophiles at position 3 by S(N) substitution. Both saturated and unsaturated sultones are sensitive to hydrolysis when reacted in water.[1]

References

 
WikiGenes - Universities