The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Neuropilin-1 expression in osteogenic cells: down-regulation during differentiation of osteoblasts into osteocytes.

The expression of neuropilin-1 ( NRP1), a recently described VEGF and semaphorin receptor expressed by endothelial cells (EC) but some non-EC types as well, was analyzed in osteoblasts in vitro and in vivo. Cultured MC3T3-E1 osteoblasts expressed NRP1 mRNA and bound VEGF(165) but not VEGF(121), characteristic of the VEGF isoform-specific binding of NRP1. These cells did not express VEGFR-1 or VEGFR-2 so that VEGF binding to osteoblasts was strictly NRP1-dependent. In a chick osteocyte differentiation system, NRP1 was expressed by osteoblasts but its expression was absent as the cells matured into osteocytes. Immunohistochemical localization of NRP1 within the developing bones of 36-day-old mice and embryonic Day 17 chicks demonstrated that NRP1 was expressed by osteoblasts migrating alongside invading blood vessels within the metaphysis of the growth plate, as well as by osteoblasts at the developing edge of trabeculae within the marrow cavity. On the other hand, NRP1 was not expressed by osteocytes in either species, consistent with the in vitro results. In addition to osteogenic cells, NRP1 expression by EC was observed throughout the bone. Together these results suggest that NRP1 might have a dual function in bone by mediating osteoblast function directly as well as angiogenesis.[1]


WikiGenes - Universities