The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Growth Plate

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Growth Plate


Psychiatry related information on Growth Plate

  • In the epiphyseal growth plate region, there was a 12-fold increase in IGF-I mRNA levels in the GH group compared to those in the control group, but there was no statistical difference between the control and T groups [6].

High impact information on Growth Plate


Chemical compound and disease context of Growth Plate


Biological context of Growth Plate

  • No differences were detected between the type X collagen-null mice and controls when growth plates of both newborn and 3-week old mice were examined by histology and by immunostaining for extracellular matrix components of bone including osteopontin, osteocalcin and type II collagen [15].
  • Recently, we reported that local administration of human GH (hGH) into the proximal cartilage growth plate of the tibia of hypophysectomized rats stimulated longitudinal bone growth on the side injected with the hormone [16].
  • Whereas bone length was reduced in Stat5ab(-/-) mice, there was no reduction in trabecular bone remodeling or growth-plate width as observed in GHR(-/-) mice, indicating that the effects of GH in bone may not involve Stat5 activation [17].
  • Compared with their wild-type littermates, mutant mice growth plates shared an expanded resting zone and narrowed proliferating and hypertrophic zones, which is correlated with the activation of Stat proteins and upregulation of cell-cycle inhibitors [18].
  • Cotreatment of growth plate chondrocytes with RA and BAPTA-AM, a cell permeable Ca2+ chelator, inhibited the up-regulation of annexin gene expression and mineralization of these cultures [19].

Anatomical context of Growth Plate

  • Thus, chondrocytes located in the hypertrophic zone of chick embryo tibial growth plate were characterized by strong annexin V expression, and those located at the chondro-osseous mineralizing border exhibited expression of both annexin V and type I collagen [20].
  • Furthermore, FGF treatment of metatarsal bone rudiments obtained from p107-/-;p130-/- embryos failed to inhibit proliferation of growth plate chondrocytes, whereas rudiments from p107-null or p130-null embryos showed only a slight inhibition of growth [21].
  • We have used a catheterization system that permits chronic infusion into the arterial supply of one hindlimb of rats to study the direct effects of rat growth hormone and human somatomedin C on growth of the tibial epiphyseal cartilage plate in hypophysectomized rats [22].
  • Histological analysis revealed that GPR103-/- mice exhibited a thinned osteochondral growth plate, a thickening of trabecular branches, and a reduction in osteoclast number, suggestive of an early arrest of osteochondral bone formation [23].
  • We report here that Krox-20 is also activated in a subpopulation of growth plate hypertrophic chondrocytes and in differentiating osteoblasts and that its disruption severely affects endochondral ossification [24].

Associations of Growth Plate with chemical compounds


Gene context of Growth Plate

  • In conclusion, Sox5 and Sox6 are needed for the establishment of multilayered growth plates, and thereby for proper and timely development of endochondral bones [30].
  • Using mouse embryos with three or four null alleles of Sox5 and Sox6, we show that they are also essential and redundant in major steps of growth plate chondrocyte differentiation [30].
  • Because Sox9 is not expressed in the mineralized portion of the growth plate, this premature mineralization is very likely the consequence of allele insufficiency existing in cells of the growth plate that express Sox9 [31].
  • Critical roles for collagenase-3 (Mmp13) in development of growth plate cartilage and in endochondral ossification [32].
  • Targeted expression of CNP in the growth plate chondrocytes can rescue the skeletal defect of Nppc(-/-) mice and allow their prolonged survival [33].

Analytical, diagnostic and therapeutic context of Growth Plate


  1. Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Luo, G., Ducy, P., McKee, M.D., Pinero, G.J., Loyer, E., Behringer, R.R., Karsenty, G. Nature (1997) [Pubmed]
  2. Indian hedgehog couples chondrogenesis to osteogenesis in endochondral bone development. Chung, U.I., Schipani, E., McMahon, A.P., Kronenberg, H.M. J. Clin. Invest. (2001) [Pubmed]
  3. Direct and sex-specific stimulation by sex steroids of creatine kinase activity and DNA synthesis in rat bone. Sömjen, D., Weisman, Y., Harell, A., Berger, E., Kaye, A.M. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  4. Gene disruption of Spred-2 causes dwarfism. Bundschu, K., Knobeloch, K.P., Ullrich, M., Schinke, T., Amling, M., Engelhardt, C.M., Renné, T., Walter, U., Schuh, K. J. Biol. Chem. (2005) [Pubmed]
  5. Broad-spectrum matrix metalloproteinase inhibitor marimastat-induced musculoskeletal side effects in rats. Renkiewicz, R., Qiu, L., Lesch, C., Sun, X., Devalaraja, R., Cody, T., Kaldjian, E., Welgus, H., Baragi, V. Arthritis Rheum. (2003) [Pubmed]
  6. Effect of testosterone on insulin-like growth factor-I (IGF-I) and IGF-I receptor gene expression in the hypophysectomized rat. Phillip, M., Palese, T., Hernandez, E.R., Roberts, C.T., LeRoith, D., Kowarski, A.A. Endocrinology (1992) [Pubmed]
  7. Mutations in the gene encoding filamin B disrupt vertebral segmentation, joint formation and skeletogenesis. Krakow, D., Robertson, S.P., King, L.M., Morgan, T., Sebald, E.T., Bertolotto, C., Wachsmann-Hogiu, S., Acuna, D., Shapiro, S.S., Takafuta, T., Aftimos, S., Kim, C.A., Firth, H., Steiner, C.E., Cormier-Daire, V., Superti-Furga, A., Bonafe, L., Graham, J.M., Grix, A., Bacino, C.A., Allanson, J., Bialer, M.G., Lachman, R.S., Rimoin, D.L., Cohn, D.H. Nat. Genet. (2004) [Pubmed]
  8. Ror2, encoding a receptor-like tyrosine kinase, is required for cartilage and growth plate development. DeChiara, T.M., Kimble, R.B., Poueymirou, W.T., Rojas, J., Masiakowski, P., Valenzuela, D.M., Yancopoulos, G.D. Nat. Genet. (2000) [Pubmed]
  9. MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Vu, T.H., Shipley, J.M., Bergers, G., Berger, J.E., Helms, J.A., Hanahan, D., Shapiro, S.D., Senior, R.M., Werb, Z. Cell (1998) [Pubmed]
  10. A fibrillar collagen gene, Col11a1, is essential for skeletal morphogenesis. Li, Y., Lacerda, D.A., Warman, M.L., Beier, D.R., Yoshioka, H., Ninomiya, Y., Oxford, J.T., Morris, N.P., Andrikopoulos, K., Ramirez, F. Cell (1995) [Pubmed]
  11. ZD6474 inhibits vascular endothelial growth factor signaling, angiogenesis, and tumor growth following oral administration. Wedge, S.R., Ogilvie, D.J., Dukes, M., Kendrew, J., Chester, R., Jackson, J.A., Boffey, S.J., Valentine, P.J., Curwen, J.O., Musgrove, H.L., Graham, G.A., Hughes, G.D., Thomas, A.P., Stokes, E.S., Curry, B., Richmond, G.H., Wadsworth, P.F., Bigley, A.L., Hennequin, L.F. Cancer Res. (2002) [Pubmed]
  12. Insulin stimulates skeletal growth in vivo and in vitro--comparison with growth hormone in rats. Heinze, E., Vetter, U., Voigt, K.H. Diabetologia (1989) [Pubmed]
  13. Thyroid hormones promote chondrocyte differentiation in mouse ATDC5 cells and stimulate endochondral ossification in fetal mouse tibias through iodothyronine deiodinases in the growth plate. Miura, M., Tanaka, K., Komatsu, Y., Suda, M., Yasoda, A., Sakuma, Y., Ozasa, A., Nakao, K. J. Bone Miner. Res. (2002) [Pubmed]
  14. Estrogen signaling is active in cartilaginous tumors: implications for antiestrogen therapy as treatment option of metastasized or irresectable chondrosarcoma. Cleton-Jansen, A.M., van Beerendonk, H.M., Baelde, H.J., Bovée, J.V., Karperien, M., Hogendoorn, P.C. Clin. Cancer Res. (2005) [Pubmed]
  15. Normal long bone growth and development in type X collagen-null mice. Rosati, R., Horan, G.S., Pinero, G.J., Garofalo, S., Keene, D.R., Horton, W.A., Vuorio, E., de Crombrugghe, B., Behringer, R.R. Nat. Genet. (1994) [Pubmed]
  16. Growth hormone stimulates the proliferation of cultured chondrocytes from rabbit ear and rat rib growth cartilage. Madsen, K., Friberg, U., Roos, P., Edén, S., Isaksson, O. Nature (1983) [Pubmed]
  17. Bone homeostasis in growth hormone receptor-null mice is restored by IGF-I but independent of Stat5. Sims, N.A., Clément-Lacroix, P., Da Ponte, F., Bouali, Y., Binart, N., Moriggl, R., Goffin, V., Coschigano, K., Gaillard-Kelly, M., Kopchick, J., Baron, R., Kelly, P.A. J. Clin. Invest. (2000) [Pubmed]
  18. Gly369Cys mutation in mouse FGFR3 causes achondroplasia by affecting both chondrogenesis and osteogenesis. Chen, L., Adar, R., Yang, X., Monsonego, E.O., Li, C., Hauschka, P.V., Yayon, A., Deng, C.X. J. Clin. Invest. (1999) [Pubmed]
  19. Retinoic acid stimulates annexin-mediated growth plate chondrocyte mineralization. Wang, W., Kirsch, T. J. Cell Biol. (2002) [Pubmed]
  20. Regulated production of mineralization-competent matrix vesicles in hypertrophic chondrocytes. Kirsch, T., Nah, H.D., Shapiro, I.M., Pacifici, M. J. Cell Biol. (1997) [Pubmed]
  21. FGF signaling targets the pRb-related p107 and p130 proteins to induce chondrocyte growth arrest. Laplantine, E., Rossi, F., Sahni, M., Basilico, C., Cobrinik, D. J. Cell Biol. (2002) [Pubmed]
  22. Evidence suggesting that the direct growth-promoting effect of growth hormone on cartilage in vivo is mediated by local production of somatomedin. Schlechter, N.L., Russell, S.M., Spencer, E.M., Nicoll, C.S. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
  23. The G-protein-coupled receptor GPR103 regulates bone formation. Baribault, H., Danao, J., Gupte, J., Yang, L., Sun, B., Richards, W., Tian, H. Mol. Cell. Biol. (2006) [Pubmed]
  24. Defective bone formation in Krox-20 mutant mice. Levi, G., Topilko, P., Schneider-Maunoury, S., Lasagna, M., Mantero, S., Cancedda, R., Charnay, P. Development (1996) [Pubmed]
  25. Bone response to phosphate salts, ergocalciferol, and calcitriol in hypophosphatemic vitamin D-resistant rickets. Glorieux, F.H., Marie, P.J., Pettifor, J.M., Delvin, E.E. N. Engl. J. Med. (1980) [Pubmed]
  26. Systemic and local regulation of the growth plate. van der Eerden, B.C., Karperien, M., Wit, J.M. Endocr. Rev. (2003) [Pubmed]
  27. Androgens and bone. Vanderschueren, D., Vandenput, L., Boonen, S., Lindberg, M.K., Bouillon, R., Ohlsson, C. Endocr. Rev. (2004) [Pubmed]
  28. Growth promotion by homocysteic acid. Clopath, P., Smith, V.C., McCully, K.S. Science (1976) [Pubmed]
  29. 25-hydroxyvitamin D: autoradiographic evidence of sites of action in epiphyseal cartilage and bone. Wezeman, F.H. Science (1976) [Pubmed]
  30. Sox5 and Sox6 are needed to develop and maintain source, columnar, and hypertrophic chondrocytes in the cartilage growth plate. Smits, P., Dy, P., Mitra, S., Lefebvre, V. J. Cell Biol. (2004) [Pubmed]
  31. Haploinsufficiency of Sox9 results in defective cartilage primordia and premature skeletal mineralization. Bi, W., Huang, W., Whitworth, D.J., Deng, J.M., Zhang, Z., Behringer, R.R., de Crombrugghe, B. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  32. Critical roles for collagenase-3 (Mmp13) in development of growth plate cartilage and in endochondral ossification. Inada, M., Wang, Y., Byrne, M.H., Rahman, M.U., Miyaura, C., López-Otín, C., Krane, S.M. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  33. Dwarfism and early death in mice lacking C-type natriuretic peptide. Chusho, H., Tamura, N., Ogawa, Y., Yasoda, A., Suda, M., Miyazawa, T., Nakamura, K., Nakao, K., Kurihara, T., Komatsu, Y., Itoh, H., Tanaka, K., Saito, Y., Katsuki, M., Nakao, K. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  34. Enhanced expression of TGF-beta and c-fos mRNAs in the growth plates of developing human long bones. Sandberg, M., Vuorio, T., Hirvonen, H., Alitalo, K., Vuorio, E. Development (1988) [Pubmed]
  35. Effects of brefeldin A on the localization of chondroitin sulfate-synthesizing enzymes. Activities in subfractions of the Golgi from chick embryo epiphyseal cartilage. Sugumaran, G., Katsman, M., Silbert, J.E. J. Biol. Chem. (1992) [Pubmed]
  36. Annexin VIII is differentially expressed by chondrocytes in the mammalian growth plate during endochondral ossification and in osteoarthritic cartilage. White, A.H., Watson, R.E., Newman, B., Freemont, A.J., Wallis, G.A. J. Bone Miner. Res. (2002) [Pubmed]
  37. Increased VEGF expression in the epiphyseal cartilage after ischemic necrosis of the capital femoral epiphysis. Kim, H.K., Bian, H., Randall, T., Garces, A., Gerstenfeld, L.C., Einhorn, T.A. J. Bone Miner. Res. (2004) [Pubmed]
  38. Growth plate cartilage formation and resorption are differentially depressed in growth retarded uremic rats. Cobo, A., López, J.M., Carbajo, E., Santos, F., Alvarez, J., Fernández, M., Weruaga, A. J. Am. Soc. Nephrol. (1999) [Pubmed]
WikiGenes - Universities