The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Tachykinins contribute to nerve-mediated contractions in the human esophagus.

BACKGROUND & AIMS: Tachykinins mediate nonadrenergic, noncholinergic excitation in the gastrointestinal tract, but their role in esophageal peristalsis remains unclear. METHODS: We used muscle strips from the distal third of human esophagus, obtained from patients undergoing esophagectomy for cancer, to investigate the contribution of tachykinins to nerve-mediated contractions. Isometric tension responses to agonists or electrical field stimulation were recorded in circular and longitudinal muscle strips. RESULTS: Tachykinins produced concentration-dependent increases in tension in circular and longitudinal muscle strips, with the following order of potency: beta-Ala(8)-neurokinin (NK) A (4-10) > NKB > substance P, suggesting NK(2) receptor involvement. The NK(2) receptor antagonist, SR48968 (1 micromol/L), inhibited responses to tachykinins in both muscles. Nerve activation produced on- and off-contractions in circular muscle and a duration-contraction in longitudinal muscle. Atropine (10 micromol/L)-insensitive nerve-evoked contractions were identified for the 3 types of responses. SR48968 produced concentration-dependent inhibition of atropine-insensitive on- and off-contractions but had no effect on the duration-contraction. At low stimulus frequency (1 Hz), on-contractions showed greater sensitivity to SR48968 than off-contractions. CONCLUSIONS: Nerve-mediated contractions in the human esophagus have a significant atropine-insensitive component. Tachykinins acting on NK(2) receptors can account for some, but not all, of this response, suggesting that other excitatory mechanisms also contribute.[1]


  1. Tachykinins contribute to nerve-mediated contractions in the human esophagus. Krysiak, P.S., Preiksaitis, H.G. Gastroenterology (2001) [Pubmed]
WikiGenes - Universities