The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Quantitative imaging of tyrosine hydroxylase and calmodulin in the human brain.

The distributions of tyrosine hydroxylase and calmodulin in adult normal postmortem human brain were analyzed quantitatively. Consecutive coronal sections were obtained from the anterior area of the right hemisphere and were stained immunohistochemically for tyrosine hydroxylase and calmodulin. Stained sections were divided into approximately 3 million microareas at 50 microm intervals, and the immunohistochemical fluorescence intensity in each area was measured by a human brain mapping analyzer, which is a microphotometry system for analysis of the distribution of neurochemicals in a large tissue slice. Immunoreactive staining of tyrosine hydroxylase and calmodulin was observed in almost all brain regions, but its intensity varied. Relatively high levels of calmodulin were observed in brain regions with high levels of tyrosine hydroxylase, though high levels of tyrosine hydroxylase were not always observed in brain regions where high levels of calmodulin were distributed. In particular, high levels of both of tyrosine hydroxylase and calmodulin were distributed in the caudate nucleus and putamen. Previously it was shown that tyrosine hydroxylase was activated and dopamine synthesis was enhanced in the neostriatum region in mice and rats by the intracerebroventricular administration of calcium through a calmodulin-dependent system. The present results combined with these previous findings suggest that the activity of tyrosine hydroxylase in the caudate nucleus and putamen of humans may also be regulated by a calcium/calmodulin-dependent system.[1]

References

  1. Quantitative imaging of tyrosine hydroxylase and calmodulin in the human brain. Sutoo, D., Akiyama, K., Yabe, K. J. Neurosci. Res. (2001) [Pubmed]
 
WikiGenes - Universities