The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Brain Mapping

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Brain Mapping


Psychiatry related information on Brain Mapping


High impact information on Brain Mapping

  • The spatiotemporal evolution of the P300 waveform was topographically mapped in a group of ten male chronic schizophrenics, using the technique of brain electrical activity mapping [9].
  • Functional brain mapping based on changes in local cerebral blood flow (lCBF) or glucose utilization (lCMR(glc)) induced by functional activation is generally carried out in animals under anesthesia, usually alpha-chloralose because of its lesser effects on cardiovascular, respiratory, and reflex functions [10].
  • Human brain mapping in dystonia reveals both endophenotypic traits and adaptive reorganization [11].
  • Extraction of clinical information from electroencephalographic background activity: the combined use of brain electrical activity mapping and intravenous sodium thiopental [12].
  • The result of our study has clinical implications when MEG and fMRI localizations are used for pre- and intraoperative brain mapping [13].

Chemical compound and disease context of Brain Mapping


Biological context of Brain Mapping


Anatomical context of Brain Mapping

  • We found that 2-deoxyglucose brain mapping causes a progressive expansion of cortical representation of the spared vibrissae [19].
  • The present study systematically and quantitatively analyzed the immunohistochemical distribution of various substances involved in synthesis, binding, and transport of dopamine in the forebrain of epileptic mice (EL mouse strain) using a brain mapping analyzer [20].

Associations of Brain Mapping with chemical compounds


Gene context of Brain Mapping

  • The high specific activity one-step radiolabeling preparation and high selectivity of [(123)I]ZIENT for SERT support its candidacy as a radioligand for mapping brain SERT sites [26].
  • The effect of the extracellular matrix recognition molecule tenascin-C on cerebral plasticity induced by vibrissectomy was investigated with 2-deoxyglucose (2DG) brain mapping in tenascin-C-deficient mice [27].
  • These results indicate that [18F]FECNT is a radioligand that is superior to 11C-WIN 35,428, [11C]CIT/RTI-55, [18F]beta-CIT-FP, and [18F]FPCT for mapping brain DAT in humans using PET [28].
  • Brain mapping techniques suggest that working memory, as measured by an A-X Continuous Performance Task, is important in ADHD [29].
  • Measurement of relative cerebral blood flow (CBF) with 15O-labeled water PET has been widely used for brain mapping experiments on language functions in normal volunteers and patients with epilepsy [30].

Analytical, diagnostic and therapeutic context of Brain Mapping


  1. In vivo imaging of human cerebral acetylcholinesterase. Pappata, S., Tavitian, B., Traykov, L., Jobert, A., Dalger, A., Mangin, J.F., Crouzel, C., DiGiamberardino, L. J. Neurochem. (1996) [Pubmed]
  2. Cyclophosphamide cystitis as a model of visceral pain in rats: a c-fos and Krox-24 study at telencephalic levels, with a note on pituitary adenylate cyclase activating polypeptide (PACAP). Bon, K., Lantéri-Minet, M., Michiels, J.F., Menétrey, D. Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale. (1998) [Pubmed]
  3. TMS motor cortical brain mapping in patients with complex regional pain syndrome type I. Krause, P., Förderreuther, S., Straube, A. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology. (2006) [Pubmed]
  4. Stable bimodal response to cholinomimetic drugs in Alzheimer's disease. Brain mapping correlates. Leuchter, A.F., Read, S.L., Shapira, J., Walter, D.O., Smith, C. Neuropsychopharmacology (1991) [Pubmed]
  5. Pharmacodynamics of venlafaxine evaluated by EEG brain mapping, psychometry and psychophysiology. Saletu, B., Grünberger, J., Anderer, P., Linzmayer, L., Semlitsch, H.V., Magni, G. British journal of clinical pharmacology. (1992) [Pubmed]
  6. The effect of sleep fragmentation on cognitive processing using computerized topographic brain mapping. Kingshott, R.N., Cosway, R.J., Deary, I.J., Douglas, N.J. Journal of sleep research. (2000) [Pubmed]
  7. Combined neurophysiological studies in Creutzfeldt-Jakob disease: a case report. Aguglia, U., Oliveri, R.L., Gambardella, A., Zappia, M., Quattrone, A. Clinical EEG (electroencephalography). (1989) [Pubmed]
  8. Technology in the assessment of learning disability. Bigler, E.D., Lajiness-O'Neill, R., Howes, N.L. Journal of learning disabilities. (1998) [Pubmed]
  9. Altered P300 topography in schizophrenia. Morstyn, R., Duffy, F.H., McCarley, R.W. Arch. Gen. Psychiatry (1983) [Pubmed]
  10. Effects of anesthesia on functional activation of cerebral blood flow and metabolism. Nakao, Y., Itoh, Y., Kuang, T.Y., Cook, M., Jehle, J., Sokoloff, L. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  11. Human brain mapping in dystonia reveals both endophenotypic traits and adaptive reorganization. Meunier, S., Garnero, L., Ducorps, A., Mazières, L., Lehéricy, S., du Montcel, S.T., Renault, B., Vidailhet, M. Ann. Neurol. (2001) [Pubmed]
  12. Extraction of clinical information from electroencephalographic background activity: the combined use of brain electrical activity mapping and intravenous sodium thiopental. Duffy, F.H., Jensen, F., Erba, G., Burchfiel, J.L., Lombroso, C.T. Ann. Neurol. (1984) [Pubmed]
  13. Correlation of sensorimotor activation with functional magnetic resonance imaging and magnetoencephalography in presurgical functional imaging: a spatial analysis. Kober, H., Nimsky, C., Möller, M., Hastreiter, P., Fahlbusch, R., Ganslandt, O. Neuroimage (2001) [Pubmed]
  14. Therapeutic effects of CDP-choline in Alzheimer's disease. Cognition, brain mapping, cerebrovascular hemodynamics, and immune factors. Cacabelos, R., Caamaño, J., Gómez, M.J., Fernández-Novoa, L., Franco-Maside, A., Alvarez, X.A. Ann. N. Y. Acad. Sci. (1996) [Pubmed]
  15. Neurophysiological changes during insulin-induced hypoglycaemia and in the recovery period following glucose infusion in type 1 (insulin-dependent) diabetes mellitus and in normal man. Tallroth, G., Lindgren, M., Stenberg, G., Rosen, I., Agardh, C.D. Diabetologia (1990) [Pubmed]
  16. Molecular cloning, pharmacological characterization, and brain mapping of the melanocortin 4 receptor in the goldfish: involvement in the control of food intake. Cerdá-Reverter, J.M., Ringholm, A., Schiöth, H.B., Peter, R.E. Endocrinology (2003) [Pubmed]
  17. Brain imaging: evoked potential, quantitative EEG and SPECT abnormalities in schizophrenia. Sieg, K.G., Willsie, D.A., Preston, D.F., Gaffney, G.R. Journal of psychiatry & neuroscience : JPN. (1991) [Pubmed]
  18. Comparative bioavailability studies with a new mixed-micelles solution of diazepam utilizing radioreceptor assay, psychometry and EEG brain mapping. Saletu, B., Anderer, P., Kinsperger, K., Grünberger, J., Sieghart, W. International clinical psychopharmacology. (1988) [Pubmed]
  19. Anatomical correlates of representational map reorganization induced by partial vibrissectomy in the barrel cortex of adult mice. Kossut, M., Juliano, S.L. Neuroscience (1999) [Pubmed]
  20. The significance of increase in striatal D(2) receptors in epileptic EL mice. Sutoo, D., Akiyama, K. Brain Res. (2003) [Pubmed]
  21. Spectroscopic brain mapping the N-acetyl aspartate to cognitive-perceptual states in chronic pain. Grachev, I.D. Mol. Psychiatry (2001) [Pubmed]
  22. Dynamic magnetic resonance imaging of the rat brain during forepaw stimulation. Hyder, F., Behar, K.L., Martin, M.A., Blamire, A.M., Shulman, R.G. J. Cereb. Blood Flow Metab. (1994) [Pubmed]
  23. Registering coronal histological 2-D sections of a rat brain with coronal sections of a 3-D brain atlas using geometric curve invariants and B-spline representation. Ali, W.S., Cohen, F.S. IEEE transactions on medical imaging. (1998) [Pubmed]
  24. EEG brain mapping in evaluating the time-course of the central action of DUP 996--a new acetylcholine releasing drug. Saletu, B., Darragh, A., Salmon, P., Coen, R. British journal of clinical pharmacology. (1989) [Pubmed]
  25. Lithium: clinical study by brain electrical activity mapping. A case report. Beaubernard, C., Minot, R., Macher, J.P. Pharmacopsychiatry (1987) [Pubmed]
  26. Synthesis and characterization of iodine-123 labeled 2beta-carbomethoxy-3beta-(4'-((Z)-2-iodoethenyl)phenyl)nortropane. A ligand for in vivo imaging of serotonin transporters by single-photon-emission tomography. Goodman, M.M., Chen, P., Plisson, C., Martarello, L., Galt, J., Votaw, J.R., Kilts, C.D., Malveaux, G., Camp, V.M., Shi, B., Ely, T.D., Howell, L., McConathy, J., Nemeroff, C.B. J. Med. Chem. (2003) [Pubmed]
  27. Reduced plasticity of cortical whisker representation in adult tenascin-C-deficient mice after vibrissectomy. Cybulska-Klosowicz, A., Zakrzewska, R., Pyza, E., Kossut, M., Schachner, M. Eur. J. Neurosci. (2004) [Pubmed]
  28. 18F-labeled FECNT: a selective radioligand for PET imaging of brain dopamine transporters. Goodman, M.M., Kilts, C.D., Keil, R., Shi, B., Martarello, L., Xing, D., Votaw, J., Ely, T.D., Lambert, P., Owens, M.J., Camp, V.M., Malveaux, E., Hoffman, J.M. Nucl. Med. Biol. (2000) [Pubmed]
  29. Project for a scientific psychiatry in the 21st century. Levy, F. The Australian and New Zealand journal of psychiatry. (2002) [Pubmed]
  30. Localization of language-related cortex with 15O-labeled water PET in patients with gliomas. Thiel, A., Herholz, K., von Stockhausen, H.M., van Leyen-Pilgram, K., Pietrzyk, U., Kessler, J., Wienhard, K., Klug, N., Heiss, W.D. Neuroimage (1998) [Pubmed]
  31. Molecular cloning, characterization and brain mapping of the melanocortin 5 receptor in the goldfish. Cerdá-Reverter, J.M., Ling, M.K., Schiöth, H.B., Peter, R.E. J. Neurochem. (2003) [Pubmed]
  32. Age-dependent response of the mouse barrel cortex to sensory deprivation: a 2-deoxyglucose study. Skibinska, A., Glazewski, S., Fox, K., Kossut, M. Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale. (2000) [Pubmed]
  33. Expression of c-Fos in Alko alcohol rats responding for ethanol in an operant paradigm. Weitemier, A.Z., Woerner, A., Bäckström, P., Hyytiä, P., Ryabinin, A.E. Alcohol. Clin. Exp. Res. (2001) [Pubmed]
  34. Synthesis of 3beta-(4-[18F]fluoromethylphenyl)- and 3beta-(2-[18F] fluoromethylphenyl)tropane-2beta-carboxylic acid methyl esters: new ligands for mapping brain dopamine transporter with positron emission tomography. Petric, A., Barrio, J.R., Namavari, M., Huang, S.C., Satyamurthy, N. Nucl. Med. Biol. (1999) [Pubmed]
WikiGenes - Universities