The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Mutations in the YRB1 gene encoding yeast ran-binding-protein-1 that impair nucleocytoplasmic transport and suppress yeast mating defects.

We identified two temperature-sensitive (ts) mutations in the essential gene, YRB1, which encodes the yeast homolog of Ran-binding-protein-1 (RanBP1), a known coregulator of the Ran GTPase cycle. Both mutations result in single amino acid substitutions of evolutionarily conserved residues (A91D and R127K, respectively) in the Ran-binding domain of Yrb1. The altered proteins have reduced affinity for Ran (Gsp1) in vivo. After shift to restrictive temperature, both mutants display impaired nuclear protein import and one also reduces poly(A)+ RNA export, suggesting a primary defect in nucleocytoplasmic trafficking. Consistent with this conclusion, both yrb1ts mutations display deleterious genetic interactions with mutations in many other genes involved in nucleocytoplasmic transport, including SRP1 (alpha-importin) and several beta-importin family members. These yrb1ts alleles were isolated by their ability to suppress two different types of mating-defective mutants (respectively, fus1Delta and ste5ts), indicating that reduction in nucleocytoplasmic transport enhances mating proficiency. Indeed, in both yrb1ts mutants, Ste5 (scaffold protein for the pheromone response MAPK cascade) is mislocalized to the cytosol, even in the absence of pheromone. Also, both yrb1ts mutations suppress the mating defect of a null mutation in MSN5, which encodes the receptor for pheromone-stimulated nuclear export of Ste5. Our results suggest that reimport of Ste5 into the nucleus is important in downregulating mating response.[1]

References

 
WikiGenes - Universities