Expression of bone morphogenetic protein-6 and transforming growth factor-beta1 in the rat brain after a mild and reversible ischemic damage.
We have examined the distribution of transforming growth factor-beta1 (TGF-beta1) and bone morphogenetic protein-6 (BMP-6) in the brain of rats subjected to a mild and reversible ischemic damage produced by a 20-min occlusion of both carotid arteries without occlusion of the vertebral arteries. We have selected this model to study how the expression of trophic factor of the TGF-beta superfamily changes in neurons that recover from a transient insult. Immunocytochemical analysis showed a loss of TGF-beta1 in neurons of all hippocampal subfields immediately after the ischemic period, followed by a recovery of immunoreactivity in CA1 and CA3 neurons after reperfusion. BMP-6 immunoreactivity was also lost in most hippocampal neurons, but immunostaining became particularly intense in the interstitial space after both ischemia and reperfusion. An interstitial localization of BMP-6 was also observed in the cerebral cortex, particularly after reperfusion. Mild ischemia also induced substantial changes in the expression of TGF-beta1 and BMP-6 within the cerebellar cortex. In control animals, these factors appeared to be localized in granule cells (TGF-beta1) and Purkinje cells (both), whereas the molecular layer was not immunopositive. Both TGF-beta1 and BMP-6 were highly expressed in the interstitial spaces of the cerebellar cortex either 20 min after ischemia or 20 min after reperfusion. Taken collectively, these results suggest that a mild and reversible ischemia stimulates the release of BMP-6 from neurons into the interstitial space. We speculate that BMP-6, besides functioning during brain development, may also regulate neuronal resistance to insults of the adult brain.[1]References
- Expression of bone morphogenetic protein-6 and transforming growth factor-beta1 in the rat brain after a mild and reversible ischemic damage. Martinez, G., Carnazza, M.L., Di Giacomo, C., Sorrenti, V., Vanella, A. Brain Res. (2001) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg