The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Cerebellar Cortex

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Cerebellar Cortex

 

Psychiatry related information on Cerebellar Cortex

  • GABA content of 5 areas of the cerebral cortex and the cerebellar cortex was measured postmortem in the brains of 23 Alzheimer and 19 control subjects and 5 patients with other causes of dementia [6].
  • Neuronal benzodiazepine ([3H]flunitrazepam) binding density (Bmax) and affinity in cerebellar cortex of the Huntington's disease patients were not significantly different from control values [7].
  • Although the basic layering of the cerebellar cortex was not altered, alignment of Purkinje neurons to form a monocellular layer was delayed associated with disorientation of some neurons in the ethanol-exposed pups [8].
  • We have used the end-specific monoclonal antibodies to amyloid beta-protein (A beta), BC05 and BA27, to investigate the molecular characteristics of the cored or stellate type of amyloid plaque that is sometimes present, along with the more common diffuse type of plaque, in the cerebellar cortex in (usually younger) cases of Alzheimer's disease [9].
  • Lurcher mutant mice (+/Lc) which exhibit a massive loss of neurons in the cerebellar cortex and in the inferior olivary nuclei were subjected to an active avoidance learning task; the animals' avoidance response must occur within a small time window after a short or a long delay [10].
 

High impact information on Cerebellar Cortex

  • To illustrate the utility of MADM, we show that cerebellar granule cell progenitors are fated at an early stage to produce granule cells with axonal projections limited to specific sublayers of the cerebellar cortex [11].
  • In the developing and adult chicken, high levels of expression were found in the mitral cells of the olfactory bulb (the target of olfactory axons) and in the Purkinje cells of the cerebellar cortex, both areas affected in patients with Kallmann syndrome [12].
  • Neuronal differentiation rescued by implantation of Weaver granule cell precursors into wild-type cerebellar cortex [13].
  • Autoradiography demonstrated prominent retrograde labeling of olivocerebellar climbing fiber neurons after injection of tritiated D-aspartate into the rat cerebellar cortex or deep nuclei [14].
  • These neurons migrate to their proper domains and, inducing axonal sprouting of specific populations of host neurons, they become integrated synaptically within the pcd cerebellar cortex [15].
 

Chemical compound and disease context of Cerebellar Cortex

 

Biological context of Cerebellar Cortex

 

Anatomical context of Cerebellar Cortex

 

Associations of Cerebellar Cortex with chemical compounds

 

Gene context of Cerebellar Cortex

  • These findings indicate regional heterogeneity of NMDA receptor subunit expression in human cerebral and cerebellar cortex [36].
  • High levels of ARPP-16/19 and ARPP-21 mRNA were also found in the cerebellar cortex, where they were confined to deeper layers [37].
  • In the cerebellar cortex TAG-1 is expressed first as granule cell progenitors differentiate in the premigratory zone of the external germinal layer [38].
  • These findings imply that loss-of-function mutations in TSC2 might lead to the development of highly vascularized tumors, subcortical tubers, and focal atrophy of the cerebellar cortex, which are features commonly associated with TSC [39].
  • Biochemical analyses of these bodies isolated from the striatum and cerebellar cortex revealed that ferritin light polypeptide (FTL) and ferritin heavy polypeptide (FTH1) were the main constituents [40].
 

Analytical, diagnostic and therapeutic context of Cerebellar Cortex

References

  1. Morphine-induced metabolic changes in human brain. Studies with positron emission tomography and [fluorine 18]fluorodeoxyglucose. London, E.D., Broussolle, E.P., Links, J.M., Wong, D.F., Cascella, N.G., Dannals, R.F., Sano, M., Herning, R., Snyder, F.R., Rippetoe, L.R. Arch. Gen. Psychiatry (1990) [Pubmed]
  2. Quinolinic acid catabolism is increased in cerebellum of patients with dominantly inherited olivopontocerebellar atrophy. Kish, S.J., Du, F., Parks, D.A., Robitaille, Y., Ball, M.J., Schut, L., Hornykiewicz, O., Schwarcz, R. Ann. Neurol. (1991) [Pubmed]
  3. Activation of cerebellar climbing fibers increases cerebellar blood flow: role of glutamate receptors, nitric oxide, and cGMP. Yang, G., Iadecola, C. Stroke (1998) [Pubmed]
  4. Hypoglycemic brain injury: metabolic and structural findings in rat cerebellar cortex during profound insulin-induced hypoglycemia and in the recovery period following glucose administration. Agardh, C.D., Kalimo, H., Olsson, Y., Siesjö, B.K. J. Cereb. Blood Flow Metab. (1981) [Pubmed]
  5. Decreased brain protein levels of cytochrome oxidase subunits in Alzheimer's disease and in hereditary spinocerebellar ataxia disorders: a nonspecific change? Kish, S.J., Mastrogiacomo, F., Guttman, M., Furukawa, Y., Taanman, J.W., Dozić, S., Pandolfo, M., Lamarche, J., DiStefano, L., Chang, L.J. J. Neurochem. (1999) [Pubmed]
  6. Gamma-aminobutyric acid concentration in brain tissue at two stages of Alzheimer's disease. Lowe, S.L., Francis, P.T., Procter, A.W., Palmer, A.M., Davison, A.N., Bowen, D.M. Brain (1988) [Pubmed]
  7. Neuronal [3H]benzodiazepine binding and levels of GABA, glutamate, and taurine are normal in Huntington's disease cerebellum. Kish, S.J., Shannak, K.S., Perry, T.L., Hornykiewicz, O. J. Neurochem. (1983) [Pubmed]
  8. Altered Purkinje cell maturation in rats exposed prenatally to ethanol. I. Cytology. Mohamed, S.A., Nathaniel, E.J., Nathaniel, D.R., Snell, L. Exp. Neurol. (1987) [Pubmed]
  9. Atypical amyloid (A beta) deposition in the cerebellum in Alzheimer's disease: an immunohistochemical study using end-specific A beta monoclonal antibodies. Mann, D.M., Iwatsubo, T., Snowden, J.S. Acta Neuropathol. (1996) [Pubmed]
  10. Timed active avoidance learning in lurcher mutant mice. Monfort, V., Chapillon, P., Mellier, D., Lalonde, R., Caston, J. Behav. Brain Res. (1998) [Pubmed]
  11. Mosaic analysis with double markers in mice. Zong, H., Espinosa, J.S., Su, H.H., Muzumdar, M.D., Luo, L. Cell (2005) [Pubmed]
  12. Expression pattern of the Kallmann syndrome gene in the olfactory system suggests a role in neuronal targeting. Rugarli, E.I., Lutz, B., Kuratani, S.C., Wawersik, S., Borsani, G., Ballabio, A., Eichele, G. Nat. Genet. (1993) [Pubmed]
  13. Neuronal differentiation rescued by implantation of Weaver granule cell precursors into wild-type cerebellar cortex. Gao, W.Q., Hatten, M.E. Science (1993) [Pubmed]
  14. Aspartate: possible neurotransmitter in cerebellar climbing fibers. Wiklund, L., Toggenburger, G., Cuénod, M. Science (1982) [Pubmed]
  15. The reconstruction of cerebellar circuits. Sotelo, C., Alvarado-Mallart, R.M. Trends Neurosci. (1991) [Pubmed]
  16. Insulin-like growth factor I modulates c-Fos induction and astrocytosis in response to neurotoxic insult. Fernandez, A.M., Garcia-Estrada, J., Garcia-Segura, L.M., Torres-Aleman, I. Neuroscience (1997) [Pubmed]
  17. Normal serotonin but elevated 5-hydroxyindoleacetic acid concentration in cerebellar cortex of patients with dominantly-inherited olivopontocerebellar atrophy. Kish, S.J., Robitaille, Y., Schut, L., el-Awar, M., Ball, M.J., Shannak, K. Neurosci. Lett. (1992) [Pubmed]
  18. Inhibition of nitric oxide synthesis impairs autoregulation of local cerebral blood flow in the rat. Tanaka, K., Fukuuchi, Y., Gomi, S., Mihara, B., Shirai, T., Nogawa, S., Nozaki, H., Nagata, E. Neuroreport (1993) [Pubmed]
  19. Laser-Doppler measurements of concentration and velocity of moving blood cells in rat cerebral circulation. Barfod, C., Akgören, N., Fabricius, M., Dirnagl, U., Lauritzen, M. Acta Physiol. Scand. (1997) [Pubmed]
  20. Transmitter biochemistry and histochemistry of the hypoplastic cerebellum in mice after neonatal administration of cytosine arabinoside. Tsuji, M., Satoh, K., Iwase, N., Tanaka, S., Takahasi, S. Brain Res. Bull. (1984) [Pubmed]
  21. Deposition and role of thrombospondin in the histogenesis of the cerebellar cortex. O'Shea, K.S., Rheinheimer, J.S., Dixit, V.M. J. Cell Biol. (1990) [Pubmed]
  22. Pattern deformities and cell loss in Engrailed-2 mutant mice suggest two separate patterning events during cerebellar development. Kuemerle, B., Zanjani, H., Joyner, A., Herrup, K. J. Neurosci. (1997) [Pubmed]
  23. Selective failure of brain-derived neurotrophic factor mRNA expression in the cerebellum of stargazer, a mutant mouse with ataxia. Qiao, X., Hefti, F., Knusel, B., Noebels, J.L. J. Neurosci. (1996) [Pubmed]
  24. Uncoupling of oxygen and glucose metabolism in persistent crossed cerebellar diaschisis. Yamauchi, H., Fukuyama, H., Nagahama, Y., Nishizawa, S., Konishi, J. Stroke (1999) [Pubmed]
  25. Role of the flocculus in mediating vestibular nucleus neuron plasticity during vestibular compensation in the rat. Johnston, A.R., Seckl, J.R., Dutia, M.B. J. Physiol. (Lond.) (2002) [Pubmed]
  26. Association of abnormal cerebellar activation with motor learning difficulties in dyslexic adults. Nicolson, R.I., Fawcett, A.J., Berry, E.L., Jenkins, I.H., Dean, P., Brooks, D.J. Lancet (1999) [Pubmed]
  27. Differential expression of alpha and beta thyroid hormone receptor genes in rat brain and pituitary. Bradley, D.J., Young, W.S., Weinberger, C. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  28. Long-term depression of glutamate-induced gamma-aminobutyric acid release in cerebellum by insulin-like growth factor I. Castro-Alamancos, M.A., Torres-Aleman, I. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  29. Degeneration of neurons, synapses, and neuropil and glial activation in a murine Atm knockout model of ataxia-telangiectasia. Kuljis, R.O., Xu, Y., Aguila, M.C., Baltimore, D. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  30. Glial cell line-derived neurotrophic factor promotes the survival and morphologic differentiation of Purkinje cells. Mount, H.T., Dean, D.O., Alberch, J., Dreyfus, C.F., Black, I.B. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  31. Immunohistochemical localization of metabotropic glutamate receptors, mGluR2 and mGluR3, in rat cerebellar cortex. Ohishi, H., Ogawa-Meguro, R., Shigemoto, R., Kaneko, T., Nakanishi, S., Mizuno, N. Neuron (1994) [Pubmed]
  32. Tonic and spillover inhibition of granule cells control information flow through cerebellar cortex. Hamann, M., Rossi, D.J., Attwell, D. Neuron (2002) [Pubmed]
  33. A mouse serine/threonine kinase homologous to C. elegans UNC51 functions in parallel fiber formation of cerebellar granule neurons. Tomoda, T., Bhatt, R.S., Kuroyanagi, H., Shirasawa, T., Hatten, M.E. Neuron (1999) [Pubmed]
  34. Neurotrophins promote the survival and development of neurons in the cerebellum of hypothyroid rats in vivo. Neveu, I., Arenas, E. J. Cell Biol. (1996) [Pubmed]
  35. Cocaine-induced reduction of glucose utilization in human brain. A study using positron emission tomography and [fluorine 18]-fluorodeoxyglucose. London, E.D., Cascella, N.G., Wong, D.F., Phillips, R.L., Dannals, R.F., Links, J.M., Herning, R., Grayson, R., Jaffe, J.H., Wagner, H.N. Arch. Gen. Psychiatry (1990) [Pubmed]
  36. Selective alterations in gene expression for NMDA receptor subunits in prefrontal cortex of schizophrenics. Akbarian, S., Sucher, N.J., Bradley, D., Tafazzoli, A., Trinh, D., Hetrick, W.P., Potkin, S.G., Sandman, C.A., Bunney, W.E., Jones, E.G. J. Neurosci. (1996) [Pubmed]
  37. Expression of mRNAs encoding ARPP-16/19, ARPP-21, and DARPP-32 in human brain tissue. Brené, S., Lindefors, N., Ehrlich, M., Taubes, T., Horiuchi, A., Kopp, J., Hall, H., Sedvall, G., Greengard, P., Persson, H. J. Neurosci. (1994) [Pubmed]
  38. Transgenic mice expressing F3/contactin from the TAG-1 promoter exhibit developmentally regulated changes in the differentiation of cerebellar neurons. Bizzoca, A., Virgintino, D., Lorusso, L., Buttiglione, M., Yoshida, L., Polizzi, A., Tattoli, M., Cagiano, R., Rossi, F., Kozlov, S., Furley, A., Gennarini, G. Development (2003) [Pubmed]
  39. Expression of the TSC2 product tuberin and its target Rap1 in normal human tissues. Wienecke, R., Maize, J.C., Reed, J.A., de Gunzburg, J., Yeung, R.S., DeClue, J.E. Am. J. Pathol. (1997) [Pubmed]
  40. Intracellular ferritin accumulation in neural and extraneural tissue characterizes a neurodegenerative disease associated with a mutation in the ferritin light polypeptide gene. Vidal, R., Ghetti, B., Takao, M., Brefel-Courbon, C., Uro-Coste, E., Glazier, B.S., Siani, V., Benson, M.D., Calvas, P., Miravalle, L., Rascol, O., Delisle, M.B. J. Neuropathol. Exp. Neurol. (2004) [Pubmed]
  41. Proto-oncogene c-myc is expressed in cerebellar neurons at different developmental stages. Ruppert, C., Goldowitz, D., Wille, W. EMBO J. (1986) [Pubmed]
  42. Synaptic and nonsynaptic localization of the GluR1 subunit of the AMPA-type excitatory amino acid receptor in the rat cerebellum. Baude, A., Molnár, E., Latawiec, D., McIlhinney, R.A., Somogyi, P. J. Neurosci. (1994) [Pubmed]
  43. Mossy and climbing fibre mediated responses evoked in the cerebellar cortex of the cat by trigeminal afferent stimulation. Cody, F.W., Richardson, H.C. J. Physiol. (Lond.) (1979) [Pubmed]
  44. Localization of the Thy-1 antigen in the cerebellar cortex of rat brain by immunofluorescence during postnatal development. Barclay, A.N. J. Neurochem. (1979) [Pubmed]
  45. Effects of hyperbilirubinaemia on glutathione S-transferase isoenzymes in cerebellar cortex of the Gunn rat. Johnson, J.A., Hayward, J.J., Kornguth, S.E., Siegel, F.L. Biochem. J. (1993) [Pubmed]
 
WikiGenes - Universities