The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Relationship of altered glutamate receptor subunit mRNA expression to acute cell loss after spinal cord contusion.

Alterations in the expression of ionotropic glutamate receptors (GluR) contribute to neuronal loss after brain ischemia and epilepsy. In order to determine whether altered expression of GluR subunits might contribute to cell loss after spinal cord injury (SCI), we performed a time course study of subunit mRNA expression using quantitative in situ hybridization. Expression was studied in ventral horn motor neurons (VMN) and glia in adjacent ventral white matter at 15 min and 4, 8, and 24 h after SCI in tissue sections 4 mm rostral and caudal to the injury epicenter. We found that the AMPA subunit GluR2 was significantly down-regulated in VMN at 24 h, but not at the earlier times examined, although half the loss of VMN in these locations occurs by 8 h after injury. No changes in the normal expression of GluR2 or GluR4 were found in white matter where glial loss occurs after SCI. NMDA subunits NR1 and NR2A were significantly and rapidly up-regulated in VMN after SCI, but only caudal to the lesion site, while VMN loss is similar rostral and caudal to the epicenter. Thus, the temporal pattern of AMPA and the spatial pattern of NMDA subunit expression changes were distinct from the pattern of VMN loss after SCI. We conclude that altered GluR subunit expression after SCI is unlikely to be involved in secondary cell loss and instead may be involved with plasticity and reorganization of the injured spinal cord.[1]

References

 
WikiGenes - Universities