The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Contusions

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Contusions

  • The authors conclude that there are discrete areas of uncoupling of cerebral blood flow and metabolism after head injury within 2 hours of cerebral contusion in the rat that cannot be explained by changes in cerebral glucose content in the majority of animals [1].
  • Very-late-onset adrenoleukodystrophy: possible precipitation of demyelination by cerebral contusion [2].
  • In addition, acute ethanol treatment reduced some of the histopathology that typically occurs following severe contusion of the medial frontal cortex but did not attenuate post-traumatic formation of edema [3].
  • These results show that blockade of bradykinin B2 receptors is an effective approach to reduce cerebral edema and to improve neurological outcome after a focal contusion to the cranium [4].
  • The amount of brain injury found at 2 weeks after injury, both at the contusion site and in the ipsilateral hippocampus, were inversely related to the dose of L-arginine administered [5].
 

Psychiatry related information on Contusions

 

High impact information on Contusions

 

Chemical compound and disease context of Contusions

  • Histologic evaluation 72 h after trauma revealed that neuronal injury was confined exclusively to region A. The results indicate that compression contusion trauma produces a transient membrane depolarization associated with a pronounced cellular release of K+ and a massive Ca2+ entry into the intracellular compartment [12].
  • Conspicuity of regions of microtrabecular trauma (bone contusions) was evaluated with conventional T2-weighted imaging in the sagittal plane, T2-weighted FSE imaging in the coronal plane, T2-weighted FS-FSE imaging in the sagittal plane, and conventional T1-weighted imaging in the sagittal plane [13].
  • Microdialysis sampling combined with HPLC was used to assess spontaneous and d-amphetamine (AMPH)-evoked release of noradrenaline (NA) in the cerebellum 1 day after probe implantation and 1 day after contusion of the right sensorimotor cortex (SMCX) in rats [14].
  • Treatment with N-benzyloxycarbonyl-Asp-Glu-Val-Asp-fluoromethyl ketone for 72 h (480 ng/day) reduced contusion size and ipsilateral dorsal hippocampal tissue loss at 3 weeks but had no effect on functional outcome versus vehicle [15].
  • Male rats received bilateral contusions of the medial prefrontal cortex and were given progesterone (4 mg/kg) or vehicle for 3 or 5 days postoperatively [16].
 

Biological context of Contusions

 

Anatomical context of Contusions

 

Gene context of Contusions

 

Analytical, diagnostic and therapeutic context of Contusions

  • During a consecutive 17 month period, 15 trauma patients were diagnosed as having a myocardial contusion on the basis of abnormal ECG in 14 patients, elevated creatinine phosphokinase (CPK) in 13 patients, and elevated CPK-Muscle Brain (CPK-MB) isoenzyme determination in 11 patients [30].
  • Adult male rats received oral administration of ethanol or drinking water 2 h prior to surgery to produce a blood ethanol concentration of 100 mg% and then received bilateral contusion injuries of the medial prefrontal cortex [3].
  • Intraspinal microinjection of 50 nmoles/19 micro g MDL28170, either 30 min prior to or 20 min following contusion injury, resulted in a more robust inhibition of total calpain activity and greater attenuation of alpha-spectrin breakdown and MAP2 proteolysis [31].
  • Fifty five patients suffering from blunt chest trauma were studied to assess the diagnosis of myocardial contusion using thallium 201 myocardial scintigraphy [32].
  • We tested this by administering dihydrokainic acid (DHK), a non-transported glutamate uptake blocker, into the rat spinal cord by microdialysis in association with contusion spinal cord injury [33].

References

  1. Uncoupling of cerebral blood flow and metabolism after cerebral contusion in the rat. Richards, H.K., Simac, S., Piechnik, S., Pickard, J.D. J. Cereb. Blood Flow Metab. (2001) [Pubmed]
  2. Very-late-onset adrenoleukodystrophy: possible precipitation of demyelination by cerebral contusion. Weller, M., Liedtke, W., Petersen, D., Opitz, H., Poremba, M. Neurology (1992) [Pubmed]
  3. Acute ethanol administration reduces the cognitive deficits associated with traumatic brain injury in rats. Janis, L.S., Hoane, M.R., Conde, D., Fulop, Z., Stein, D.G. J. Neurotrauma (1998) [Pubmed]
  4. Effect of LF 16-0687MS, a new nonpeptide bradykinin B2 receptor antagonist, in a rat model of closed head trauma. Pruneau, D., Chorny, I., Benkovitz, V., Artru, A., Roitblat, L., Shapira, Y. J. Neurotrauma (1999) [Pubmed]
  5. Neuroprotective effects of L-arginine administration after cortical impact injury in rats: dose response and time window. Cherian, L., Chacko, G., Goodman, C., Robertson, C.S. J. Pharmacol. Exp. Ther. (2003) [Pubmed]
  6. Comparing deficits following excitotoxic and contusion injuries in the thoracic and lumbar spinal cord of the adult rat. Magnuson, D.S., Trinder, T.C., Zhang, Y.P., Burke, D., Morassutti, D.J., Shields, C.B. Exp. Neurol. (1999) [Pubmed]
  7. Multiple personality disorder as perpetrator of child abuse. Brown, G.W. Child abuse & neglect. (1983) [Pubmed]
  8. Posttraumatic therapeutic vaccination with modified myelin self-antigen prevents complete paralysis while avoiding autoimmune disease. Hauben, E., Agranov, E., Gothilf, A., Nevo, U., Cohen, A., Smirnov, I., Steinman, L., Schwartz, M. J. Clin. Invest. (2001) [Pubmed]
  9. Folic acid supplementation enhances repair of the adult central nervous system. Iskandar, B.J., Nelson, A., Resnick, D., Pate Skene, J.H., Gao, P., Johnson, C., Cook, T.D., Hariharan, N. Ann. Neurol. (2004) [Pubmed]
  10. Passive or active immunization with myelin basic protein promotes recovery from spinal cord contusion. Hauben, E., Butovsky, O., Nevo, U., Yoles, E., Moalem, G., Agranov, E., Mor, F., Leibowitz-Amit, R., Pevsner, E., Akselrod, S., Neeman, M., Cohen, I.R., Schwartz, M. J. Neurosci. (2000) [Pubmed]
  11. Reduction of cognitive and motor deficits after traumatic brain injury in mice deficient in poly(ADP-ribose) polymerase. Whalen, M.J., Clark, R.S., Dixon, C.E., Robichaud, P., Marion, D.W., Vagni, V., Graham, S.H., Virag, L., Hasko, G., Stachlewitz, R., Szabo, C., Kochanek, P.M. J. Cereb. Blood Flow Metab. (1999) [Pubmed]
  12. Regional changes in interstitial K+ and Ca2+ levels following cortical compression contusion trauma in rats. Nilsson, P., Hillered, L., Olsson, Y., Sheardown, M.J., Hansen, A.J. J. Cereb. Blood Flow Metab. (1993) [Pubmed]
  13. Bone contusions of the knee: increased lesion detection with fast spin-echo MR imaging with spectroscopic fat saturation. Kapelov, S.R., Teresi, L.M., Bradley, W.G., Bucciarelli, N.R., Murakami, D.M., Mullin, W.J., Jordan, J.E. Radiology. (1993) [Pubmed]
  14. Spontaneous and amphetamine-evoked release of cerebellar noradrenaline after sensorimotor cortex contusion: an in vivo microdialysis study in the awake rat. Krobert, K.A., Sutton, R.L., Feeney, D.M. J. Neurochem. (1994) [Pubmed]
  15. Caspase-3 mediated neuronal death after traumatic brain injury in rats. Clark, R.S., Kochanek, P.M., Watkins, S.C., Chen, M., Dixon, C.E., Seidberg, N.A., Melick, J., Loeffert, J.E., Nathaniel, P.D., Jin, K.L., Graham, S.H. J. Neurochem. (2000) [Pubmed]
  16. Progesterone protects against necrotic damage and behavioral abnormalities caused by traumatic brain injury. Shear, D.A., Galani, R., Hoffman, S.W., Stein, D.G. Exp. Neurol. (2002) [Pubmed]
  17. Acute changes in regional cerebral (18)F-FDG kinetics in patients with traumatic brain injury. Hattori, N., Huang, S.C., Wu, H.M., Liao, W., Glenn, T.C., Vespa, P.M., Phelps, M.E., Hovda, D.A., Bergsneider, M. J. Nucl. Med. (2004) [Pubmed]
  18. Chemokine antagonist infusion attenuates cellular infiltration following spinal cord contusion injury in rat. Ghirnikar, R.S., Lee, Y.L., Eng, L.F. J. Neurosci. Res. (2000) [Pubmed]
  19. Allopregnanolone and progesterone decrease cell death and cognitive deficits after a contusion of the rat pre-frontal cortex. Djebaili, M., Hoffman, S.W., Stein, D.G. Neuroscience (2004) [Pubmed]
  20. Cytokine mRNA profiles in contused spinal cord and axotomized facial nucleus suggest a beneficial role for inflammation and gliosis. Streit, W.J., Semple-Rowland, S.L., Hurley, S.D., Miller, R.C., Popovich, P.G., Stokes, B.T. Exp. Neurol. (1998) [Pubmed]
  21. Cytoskeletal derangements of cortical neuronal processes three hours after traumatic brain injury in rats: an immunofluorescence study. Posmantur, R.M., Kampfl, A., Liu, S.J., Heck, K., Taft, W.C., Clifton, G.L., Hayes, R.L. J. Neuropathol. Exp. Neurol. (1996) [Pubmed]
  22. Changes in NMDA receptor subunit expression in response to contusive spinal cord injury. Grossman, S.D., Wolfe, B.B., Yasuda, R.P., Wrathall, J.R. J. Neurochem. (2000) [Pubmed]
  23. Macrophages and neurons are targets of retinoic acid signaling after spinal cord contusion injury. Schrage, K., Koopmans, G., Joosten, E.A., Mey, J. Eur. J. Neurosci. (2006) [Pubmed]
  24. GFAP and S100beta expression in the cortex and hippocampus in response to mild cortical contusion. Hinkle, D.A., Baldwin, S.A., Scheff, S.W., Wise, P.M. J. Neurotrauma (1997) [Pubmed]
  25. Transplants of fibroblasts expressing BDNF and NT-3 promote recovery of bladder and hindlimb function following spinal contusion injury in rats. Mitsui, T., Fischer, I., Shumsky, J.S., Murray, M. Exp. Neurol. (2005) [Pubmed]
  26. Cerebral amyloid angiopathy in traumatic brain injury: association with apolipoprotein E genotype. Leclercq, P.D., Murray, L.S., Smith, C., Graham, D.I., Nicoll, J.A., Gentleman, S.M. J. Neurol. Neurosurg. Psychiatr. (2005) [Pubmed]
  27. Monocyte recruitment and myelin removal are delayed following spinal cord injury in mice with CCR2 chemokine receptor deletion. Ma, M., Wei, T., Boring, L., Charo, I.F., Ransohoff, R.M., Jakeman, L.B. J. Neurosci. Res. (2002) [Pubmed]
  28. Vascular endothelial growth factor improves functional outcome and decreases secondary degeneration in experimental spinal cord contusion injury. Widenfalk, J., Lipson, A., Jubran, M., Hofstetter, C., Ebendal, T., Cao, Y., Olson, L. Neuroscience (2003) [Pubmed]
  29. Increase of insulin-like growth factor (IGF)-1, IGF binding protein-2 and -4 mRNAs following cerebral contusion. Sandberg Nordqvist, A.C., von Holst, H., Holmin, S., Sara, V.R., Bellander, B.M., Schalling, M. Brain Res. Mol. Brain Res. (1996) [Pubmed]
  30. Ventricular function in myocardial contusion: a preliminary study. Torres-Mirabal, P., Gruenberg, J.C., Talbert, J.G., Brown, R.S. Crit. Care Med. (1982) [Pubmed]
  31. Evaluation of conditions for calpain inhibition in the rat spinal cord: effective postinjury inhibition with intraspinal MDL28170 microinjection. Zhang, S.X., Bondada, V., Geddes, J.W. J. Neurotrauma (2003) [Pubmed]
  32. Myocardial contusion in patients with blunt chest trauma as evaluated by thallium 201 myocardial scintigraphy. Bodin, L., Rouby, J.J., Viars, P. Chest (1988) [Pubmed]
  33. Evidence that reversed glutamate uptake contributes significantly to glutamate release following experimental injury to the rat spinal cord. McAdoo, D.J., Xu, G., Robak, G., Hughes, M.G., Price, E.M. Brain Res. (2000) [Pubmed]
 
WikiGenes - Universities