The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Importance of leucine zipper domain of mi transcription factor (MITF) for differentiation of mast cells demonstrated using mi(ce)/mi(ce) mutant mice of which MITF lacks the zipper domain.

The mi transcription factor (MITF) is a basic helix-loop-helix leucine zipper (bHLH-Zip) transcription factor that is important for the development of mast cells. Mast cells of mi/mi genotype express normal amount of abnormal MITF (mi-MITF), whereas mast cells of tg/tg genotype do not express any MITFs. Mast cells of mi/mi mice show more severe abnormalities than those of tg/tg mice, indicating that the mi-MITF possesses the inhibitory function. The MITF encoded by the mi(ce) mutant allele (ce-MITF) lacks the Zip domain. We examined the importance of the Zip domain using mi(ce)/mi(ce) mice. The amounts of c-kit, granzyme B (Gr B), and tryptophan hydroxylase (TPH) messenger RNAs decreased in mast cells of mi(ce)/mi(ce) mice to levels comparable to those of tg/tg mice, and the amounts were intermediate between those of +/+ mice and those of mi/mi mice. Gr B mediates the cytotoxic activity of mast cells, and TPH is a rate-limiting enzyme for the synthesis of serotonin. The cytotoxic activity and serotonin content of mi(ce)/mi(ce) mast cells were comparable to those of tg/tg mast cells and were significantly higher than those of mi/mi mast cells. The phenotype of mi(ce)/mi(ce) mast cells was similar to that of tg/tg mast cells rather than to that of mi/mi mast cells, suggesting that the ce-MITF had no functions. The Zip domain of MITF appeared to be important for the development of mast cells. (Blood. 2001;97:2038-2044)[1]

References

  1. Importance of leucine zipper domain of mi transcription factor (MITF) for differentiation of mast cells demonstrated using mi(ce)/mi(ce) mutant mice of which MITF lacks the zipper domain. Morii, E., Ogihara, H., Kim, D.K., Ito, A., Oboki, K., Lee, Y.M., Jippo, T., Nomura, S., Maeyama, K., Lamoreux, M.L., Kitamura, Y. Blood (2001) [Pubmed]
 
WikiGenes - Universities