The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Mitf  -  microphthalmia-associated transcription...

Mus musculus

Synonyms: BCC2, Bhlhe32, Bw, Gsfbcc2, Mi, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Mitf


High impact information on Mitf


Chemical compound and disease context of Mitf


Biological context of Mitf


Anatomical context of Mitf

  • Kit/SCF signaling and Mitf-dependent transcription are both essential for melanocyte development and pigmentation [1].
  • Defective Mitf activity results in spontaneous B cell activation, antibody secretion, and autoantibody production [13].
  • Here, we uncover a role for Tfe3 in osteoclast development, a role that is functionally redundant with Mitf [2].
  • Melanocyte development in vivo and in neural crest cell cultures: crucial dependence on the Mitf basic-helix-loop-helix-zipper transcription factor [18].
  • The mast cell isoform functions differently from the melanocyte isoform in its ability to activate cell type-specific Mitf gene targets [17].

Associations of Mitf with chemical compounds

  • Tumor necrosis factor (TNF)-related activation-induced cytokine (TRANCE) induces osteoclast formation from monocyte/macrophage lineage cells via various transcription factors, including the Mi transcription factor (Mitf) [19].
  • Mitf-PU.1 interactions with the tartrate-resistant acid phosphatase gene promoter during osteoclast differentiation [20].
  • The introduction of +-MITF but not of mi-MITF normalized the serotonin content in mi/mi CMCs [21].
  • Involvement of transcription factor encoded by the mi locus in the expression of c-kit receptor tyrosine kinase in cultured mast cells of mice [22].
  • The mutant mi allele represents a deletion of an arginine at the basic domain of MITF [23].

Physical interactions of Mitf

  • Tissue-specific control of Oa1 transcription lies within a region of 617 bp that contains the E-box bound by Mitf [24].
  • Our results suggest that accidental stimulation of CD8+ CTL recognizing major histocompatibility complex class I-binding peptides derived from melanocytic proteins in the context of an inflammatory skin disease may play an important role in the pathophysiology of vitiligo [25].

Regulatory relationships of Mitf

  • Wild-type neural crest cell cultures rapidly gave rise to cells that expressed Mitf and coexpressed Kit and Dct [18].
  • Pax3 protein and mRNA levels decline steadily after IL6RIL6 treatment, and overexpression of an ectopic Pax3 cDNA suppresses the Mitf promoter inhibition [26].
  • This phosphorylation is required for Pax3 down-regulation and Mitf promoter silencing since these are inhibited in F10.9 cells overexpressing the Stat3 DN-mutant Y705F [26].
  • It provides in vivo evidence that Mitf regulates the transcription of the gene encoding TRP-1 as well as tyrosinase [27].
  • We report here that Mitf is expressed ectopically in the Chx10(or-J/or-J) neuroretina (NR), demonstrating that Chx10 normally represses the neuroretinal expression of Mitf [28].

Other interactions of Mitf

  • In Sox10-mutant zebrafish, experimentally induced expression of Mitf fully rescues pigmentation [29].
  • The results suggest that Mitf first plays a role in promoting the transition of precursor cells to melanoblasts and subsequently, by influencing Kit expression, melanoblast survival [18].
  • In the Mitf promoter, the main cis-acting element mediating the IL6RIL6 effect is shown to be the binding site of Pax3, a paired homeodomain factor regulating among other things the development of melanocytes [26].
  • Expression of tyrosinase and the tyrosinase related proteins in the Mitfvit (vitiligo) mouse eye: implications for the function of the microphthalmia transcription factor [27].
  • The data suggests that transcription of the gene encoding TRP-1 is extremely dependent upon functional Mitf [27].

Analytical, diagnostic and therapeutic context of Mitf


  1. Bcl2 regulation by the melanocyte master regulator Mitf modulates lineage survival and melanoma cell viability. McGill, G.G., Horstmann, M., Widlund, H.R., Du, J., Motyckova, G., Nishimura, E.K., Lin, Y.L., Ramaswamy, S., Avery, W., Ding, H.F., Jordan, S.A., Jackson, I.J., Korsmeyer, S.J., Golub, T.R., Fisher, D.E. Cell (2002) [Pubmed]
  2. Mitf and Tfe3, two members of the Mitf-Tfe family of bHLH-Zip transcription factors, have important but functionally redundant roles in osteoclast development. Steingrimsson, E., Tessarollo, L., Pathak, B., Hou, L., Arnheiter, H., Copeland, N.G., Jenkins, N.A. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  3. White mutants in mice shedding light on humans. Halaban, R., Moellmann, G. J. Invest. Dermatol. (1993) [Pubmed]
  4. Mutation in intron 6 of the hamster Mitf gene leads to skipping of the subsequent exon and creates a novel animal model for the human Waardenburg syndrome type II. Graw, J., Pretsch, W., Löster, J. Genetics (2003) [Pubmed]
  5. Transient overexpression of the Microphthalmia gene in the eyes of Microphthalmia vitiligo mutant mice. Bora, N., Conway, S.J., Liang, H., Smith, S.B. Dev. Dyn. (1998) [Pubmed]
  6. Molecular basis of mouse microphthalmia (mi) mutations helps explain their developmental and phenotypic consequences. Steingrímsson, E., Moore, K.J., Lamoreux, M.L., Ferré-D'Amaré, A.R., Burley, S.K., Zimring, D.C., Skow, L.C., Hodgkinson, C.A., Arnheiter, H., Copeland, N.G. Nat. Genet. (1994) [Pubmed]
  7. Waardenburg syndrome type 2 caused by mutations in the human microphthalmia (MITF) gene. Tassabehji, M., Newton, V.E., Read, A.P. Nat. Genet. (1994) [Pubmed]
  8. MAP kinase links the transcription factor Microphthalmia to c-Kit signalling in melanocytes. Hemesath, T.J., Price, E.R., Takemoto, C., Badalian, T., Fisher, D.E. Nature (1998) [Pubmed]
  9. Levels of retinoic acid and retinaldehyde dehydrogenase expression in eyes of the Mitf-vit mouse model of retinal degeneration. Duncan, T., Swint, C., Smith, S.B., Wiggert, B.N. Mol. Vis. (1999) [Pubmed]
  10. Redundant and alternative roles for activating Fc receptors and complement in an antibody-dependent model of autoimmune vitiligo. Trcka, J., Moroi, Y., Clynes, R.A., Goldberg, S.M., Bergtold, A., Perales, M.A., Ma, M., Ferrone, C.R., Carroll, M.C., Ravetch, J.V., Houghton, A.N. Immunity (2002) [Pubmed]
  11. Anti-epileptogenic effect of beta-carotene and vitamin A in pentylenetetrazole-kindling model of epilepsy in mice. Sayyah, M., Yousefi-Pour, M., Narenjkar, J. Epilepsy Res. (2005) [Pubmed]
  12. A new antithrombotic agent, aspalatone, attenuated cardiotoxicity induced by doxorubicin in the mouse; possible involvement of antioxidant mechanism. Kim, C., Nam, S.W., Choi, D.Y., Choi, J.H., Park, E.S., Jhoo, W.K., Kim, H.C. Life Sci. (1997) [Pubmed]
  13. Active inhibition of plasma cell development in resting B cells by microphthalmia-associated transcription factor. Lin, L., Gerth, A.J., Peng, S.L. J. Exp. Med. (2004) [Pubmed]
  14. Transdifferentiation of the retina into pigmented cells in ocular retardation mice defines a new function of the homeodomain gene Chx10. Rowan, S., Chen, C.M., Young, T.L., Fisher, D.E., Cepko, C.L. Development (2004) [Pubmed]
  15. Otx genes are required for tissue specification in the developing eye. Martinez-Morales, J.R., Signore, M., Acampora, D., Simeone, A., Bovolenta, P. Development (2001) [Pubmed]
  16. Signaling and transcriptional regulation in the neural crest-derived melanocyte lineage: interactions between KIT and MITF. Hou, L., Panthier, J.J., Arnheiter, H. Development (2000) [Pubmed]
  17. The identification and functional characterization of a novel mast cell isoform of the microphthalmia-associated transcription factor. Takemoto, C.M., Yoon, Y.J., Fisher, D.E. J. Biol. Chem. (2002) [Pubmed]
  18. Melanocyte development in vivo and in neural crest cell cultures: crucial dependence on the Mitf basic-helix-loop-helix-zipper transcription factor. Opdecamp, K., Nakayama, A., Nguyen, M.T., Hodgkinson, C.A., Pavan, W.J., Arnheiter, H. Development (1997) [Pubmed]
  19. Id helix-loop-helix proteins negatively regulate TRANCE-mediated osteoclast differentiation. Lee, J., Kim, K., Kim, J.H., Jin, H.M., Choi, H.K., Lee, S.H., Kook, H., Kim, K.K., Yokota, Y., Lee, S.Y., Choi, Y., Kim, N. Blood (2006) [Pubmed]
  20. Mitf-PU.1 interactions with the tartrate-resistant acid phosphatase gene promoter during osteoclast differentiation. Partington, G.A., Fuller, K., Chambers, T.J., Pondel, M. Bone (2004) [Pubmed]
  21. Systematic method to obtain novel genes that are regulated by mi transcription factor: impaired expression of granzyme B and tryptophan hydroxylase in mi/mi cultured mast cells. Ito, A., Morii, E., Maeyama, K., Jippo, T., Kim, D.K., Lee, Y.M., Ogihara, H., Hashimoto, K., Kitamura, Y., Nojima, H. Blood (1998) [Pubmed]
  22. Involvement of transcription factor encoded by the mi locus in the expression of c-kit receptor tyrosine kinase in cultured mast cells of mice. Tsujimura, T., Morii, E., Nozaki, M., Hashimoto, K., Moriyama, Y., Takebayashi, K., Kondo, T., Kanakura, Y., Kitamura, Y. Blood (1996) [Pubmed]
  23. Involvement of transcription factor encoded by the mouse mi locus (MITF) in apoptosis of cultured mast cells induced by removal of interleukin-3. Tsujimura, T., Hashimoto, K., Morii, E., Tunio, G.M., Tsujino, K., Kondo, T., Kanakura, Y., Kitamura, Y. Am. J. Pathol. (1997) [Pubmed]
  24. The microphthalmia transcription factor (Mitf) controls expression of the ocular albinism type 1 gene: link between melanin synthesis and melanosome biogenesis. Vetrini, F., Auricchio, A., Du, J., Angeletti, B., Fisher, D.E., Ballabio, A., Marigo, V. Mol. Cell. Biol. (2004) [Pubmed]
  25. Peripheral CD8+ T cell tolerance against melanocytic self-antigens in the skin is regulated in two steps by CD4+ T cells and local inflammation: implications for the pathophysiology of vitiligo. Steitz, J., Brück, J., Lenz, J., Büchs, S., Tüting, T. J. Invest. Dermatol. (2005) [Pubmed]
  26. Pax3 down-regulation and shut-off of melanogenesis in melanoma B16/F10.9 by interleukin-6 receptor signaling. Kamaraju, A.K., Bertolotto, C., Chebath, J., Revel, M. J. Biol. Chem. (2002) [Pubmed]
  27. Expression of tyrosinase and the tyrosinase related proteins in the Mitfvit (vitiligo) mouse eye: implications for the function of the microphthalmia transcription factor. Smith, S.B., Zhou, B.K., Orlow, S.J. Exp. Eye Res. (1998) [Pubmed]
  28. Chx10 repression of Mitf is required for the maintenance of mammalian neuroretinal identity. Horsford, D.J., Nguyen, M.T., Sellar, G.C., Kothary, R., Arnheiter, H., McInnes, R.R. Development (2005) [Pubmed]
  29. Interspecies difference in the regulation of melanocyte development by SOX10 and MITF. Hou, L., Arnheiter, H., Pavan, W.J. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  30. Microphthalmia transcription factor. A sensitive and specific melanocyte marker for MelanomaDiagnosis. King, R., Weilbaecher, K.N., McGill, G., Cooley, E., Mihm, M., Fisher, D.E. Am. J. Pathol. (1999) [Pubmed]
  31. Spontaneous transdifferentiation of quail pigmented epithelial cell is accompanied by a mutation in the Mitf gene. Mochii, M., Ono, T., Matsubara, Y., Eguchi, G. Dev. Biol. (1998) [Pubmed]
WikiGenes - Universities