The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Overexpression of stomatin depresses GLUT-1 glucose transporter activity.

We showed previously that GLUT-1 glucose transporter is associated with stomatin (band 7.2b) in human red blood cell membranes and in Clone 9 cells. We show here that in a mixed population of stably transfected cells, overexpression of either murine or human stomatin resulted in 35-50% reduction in the basal rate of glucose transport. Moreover, there was a correlation between increased expression of stomatin and depression in the rate of glucose transport. In two clones chosen for further study, the ~10% and ~70% reduction in basal rate of glucose transport was associated with increases in stomatin mRNA and protein expression without a detectable change in GLUT-1 content in plasma membranes of either clone. In the clone overexpressing high levels of stomatin, immunoprecipitated GLUT-1 was associated with a large amount of stomatin as a coimmunoprecipitant. Employing extracts of cells overexpressing human stomatin, we found that stomatin bound to the glutathione-S-transferase ( GST) fusion protein containing the COOH-terminal 42-amino acid segment of GLUT-1 but not to GST alone or a GST fusion protein containing the 66-amino acid central loop of GLUT-1. Rat stomatin cDNA was cloned by RT-PCR and found to be highly homologous to mouse (97%) and human (86%) stomatins. These results suggest that overexpression of stomatin results in a depression in the basal rate of glucose transport by decreasing the "intrinsic" activity of GLUT-1, probably through protein-protein interaction.[1]

References

  1. Overexpression of stomatin depresses GLUT-1 glucose transporter activity. Zhang, J.Z., Abbud, W., Prohaska, R., Ismail-Beigi, F. Am. J. Physiol., Cell Physiol. (2001) [Pubmed]
 
WikiGenes - Universities